Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Kernel-based quantum regressor models learning non-Markovianity

Nenhuma Miniatura disponível

Data

2023-02-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physical Review A, v. 107, n. 2, 2023.

Itens relacionados

Financiadores

Coleções