Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Kernel-based quantum regressor models learning non-Markovianity

dc.contributor.authorTancara, Diego
dc.contributor.authorDinani, Hossein T.
dc.contributor.authorNorambuena, Ariel
dc.contributor.authorFanchini, Felipe F. [UNESP]
dc.contributor.authorCoto, Raúl
dc.contributor.institutionUniversidad Mayor
dc.contributor.institutionVicerrectoría de Investigación
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFlorida International University
dc.contributor.institutionSantiago de Chile
dc.date.accessioned2023-07-29T12:50:44Z
dc.date.available2023-07-29T12:50:44Z
dc.date.issued2023-02-01
dc.description.abstractQuantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models.en
dc.description.affiliationCentro de Óptica e Información Cuántica Universidad Mayor, Vicerrectoría de Investigación
dc.description.affiliationEscuela Data Science Facultad de Ciencias Ingenería y Tecnología Universidad Mayor
dc.description.affiliationUniversidad Mayor Vicerrectoría de Investigación
dc.description.affiliationFaculdade de Ciências UNESP Universidade Estadual Paulista, SP
dc.description.affiliationDepartment of Physics Florida International University
dc.description.affiliationUniversidad Bernardo O Higgins Santiago de Chile
dc.description.affiliationUnespFaculdade de Ciências UNESP Universidade Estadual Paulista, SP
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.107.022402
dc.identifier.citationPhysical Review A, v. 107, n. 2, 2023.
dc.identifier.doi10.1103/PhysRevA.107.022402
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.scopus2-s2.0-85147735110
dc.identifier.urihttp://hdl.handle.net/11449/246795
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.sourceScopus
dc.titleKernel-based quantum regressor models learning non-Markovianityen
dc.typeArtigo
unesp.author.orcid0000-0001-9496-8765[3]
unesp.author.orcid0000-0003-3297-905X[4]
unesp.author.orcid0000-0002-3160-585X 0000-0002-3160-585X[5]

Arquivos

Coleções