Kernel-based quantum regressor models learning non-Markovianity
dc.contributor.author | Tancara, Diego | |
dc.contributor.author | Dinani, Hossein T. | |
dc.contributor.author | Norambuena, Ariel | |
dc.contributor.author | Fanchini, Felipe F. [UNESP] | |
dc.contributor.author | Coto, Raúl | |
dc.contributor.institution | Universidad Mayor | |
dc.contributor.institution | Vicerrectoría de Investigación | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Florida International University | |
dc.contributor.institution | Santiago de Chile | |
dc.date.accessioned | 2023-07-29T12:50:44Z | |
dc.date.available | 2023-07-29T12:50:44Z | |
dc.date.issued | 2023-02-01 | |
dc.description.abstract | Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models. | en |
dc.description.affiliation | Centro de Óptica e Información Cuántica Universidad Mayor, Vicerrectoría de Investigación | |
dc.description.affiliation | Escuela Data Science Facultad de Ciencias Ingenería y Tecnología Universidad Mayor | |
dc.description.affiliation | Universidad Mayor Vicerrectoría de Investigación | |
dc.description.affiliation | Faculdade de Ciências UNESP Universidade Estadual Paulista, SP | |
dc.description.affiliation | Department of Physics Florida International University | |
dc.description.affiliation | Universidad Bernardo O Higgins Santiago de Chile | |
dc.description.affiliationUnesp | Faculdade de Ciências UNESP Universidade Estadual Paulista, SP | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevA.107.022402 | |
dc.identifier.citation | Physical Review A, v. 107, n. 2, 2023. | |
dc.identifier.doi | 10.1103/PhysRevA.107.022402 | |
dc.identifier.issn | 2469-9934 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.scopus | 2-s2.0-85147735110 | |
dc.identifier.uri | http://hdl.handle.net/11449/246795 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review A | |
dc.source | Scopus | |
dc.title | Kernel-based quantum regressor models learning non-Markovianity | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0001-9496-8765[3] | |
unesp.author.orcid | 0000-0003-3297-905X[4] | |
unesp.author.orcid | 0000-0002-3160-585X 0000-0002-3160-585X[5] |