N-fertilization of tropical pastures improves performance but not methane emission of Nellore growing bulls
Nenhuma Miniatura disponível
Data
2023-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Grazing management and N-fertilizer have been reported to improve tropical forage productivity and quality, however, their effect on methane emission of grazing animals remains uncertain. Therefore, this study aimed to assess the effects of increasing application rates of nitrogen (N) fertilization of Marandu palisadegrass under continuous stocking on intake, digestibility, nitrogen balance, and enteric methane emissions of Nellore growing bulls. We hypothesized that changes in the forage nutritive value caused by N fertilization of pastures combined with adequate grazing management (e.g., greater crude protein [CP] and digestibility) would lead to an increase in animal productivity (e.g., greater average daily gain [ADG] and gain per area), and then, to a decrease in methane emission intensity. Treatments consisted of different annual application rates of nitrogen fertilization: 0, 75, and 150 kg N/ha using ammonium nitrate (32% N) as the nitrogen source. The experimental design was completely randomized, with three treatments and four replications (12 paddocks). Intake, digestibility, N balance, and methane emissions were measured in eight animals per treatment. CP intake, digestibility and N balance increased linearly with the increase in N fertilization (P < 0.05). In addition, stocking rate (SR) and ADG linearly increased from 1.75 animal unit (AU = 450 kg)/ha and 0.62 kg/d (0 kg N/ha) to 3.75 AU/ha and 0.82 kg/d (150 kg N/ha), respectively. Individual methane emissions nor methane emission intensity were affected by treatment with an average of 164.7 g/d and 199.7 g/kg ADG (P > 0.05). Annual N fertilization with ammonium nitrate between 75 and 150 kg N/ha in palisadegrass pastures under continuous stocking enhances animal performance per unit area yet not affecting neither methane production nor intensity.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Animal Science, v. 101.