Self organizing maps and bit signature: A study applied on signal language recognition

dc.contributor.authorNeris, Marrony N.
dc.contributor.authorSilva, Alexandre J.
dc.contributor.authorPeres, Sarajane M.
dc.contributor.authorFlores, Franklin C.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-28T18:55:48Z
dc.date.available2022-04-28T18:55:48Z
dc.date.issued2008-11-24
dc.description.abstractSelf Organizing Map (SOM) is a kind of artificial neural network with a competitive and unsupervised learning. This technique is commonly used to dataset clustering tasks and can be useful in patterns recognition problems. This paper presents an artificial neural network application to signals language recognition problem, where the image representation is given by bit signatures. The recognition results are promising and are presented in this paper. More, some analysis about the combination SOM + bit signature improved our understanding about the characteristics of the LIBRAS signals and the conclusions are also listed in this paper. © 2008 IEEE.en
dc.description.affiliationArts, Science and Humanities School State University of São Paulo (USP), São Paulo
dc.description.affiliationComputer Science Department State University of Maringá (UEM), Maringá, PR
dc.description.affiliationState University of Campinas - UNICAMP, Campinas, SP
dc.format.extent2934-2941
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2008.4634211
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks, p. 2934-2941.
dc.identifier.doi10.1109/IJCNN.2008.4634211
dc.identifier.scopus2-s2.0-56349090098
dc.identifier.urihttp://hdl.handle.net/11449/219486
dc.language.isoeng
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks
dc.sourceScopus
dc.titleSelf organizing maps and bit signature: A study applied on signal language recognitionen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções