Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis
Nenhuma Miniatura disponível
Data
2022-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Metal-organic frameworks (MOFs) are versatile materials because they have a large internal surface area and tuneable pores, making them suitable for enzyme immobilization. In this study, we prepared a typical microporous Fe-BDC MOF through a thermal treatment to produce additional meso and macropores interconnected to each other, capable of immobilizing the Burkholderia lata LBBIO-BL02 (BLL) lipase by entrapment and physical adsorption. The immobilization efficiency (E) was 90%, and the activity retention (R) was 400% (pNPP hydrolysis). The immobilized lipase (BLL@BDC) also showed excellent activity in the hydrolysis of vegetable oils in aqueous medium, achieving up to 3,200 U g−1 for olive oil, as well as high stability in organic solvents, especially for polar ones, such as iso-propanol (101.5 ± 2.6%), ethanol (103.0 ± 6.0%) and acetone (107.7 ± 8.3%). The results indicate that the multiporous Fe-BDC MOF is a promising support for lipase immobilization and further application in biocatalysis performed in organic media.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Biocatalysis and Biotransformation.