Stability propertiesproperties of standing waves for NLS equations with the delta'-interaction
dc.contributor.author | Pava, Jaime Angulo | |
dc.contributor.author | Goloshchapova, Nataliia | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T17:27:37Z | |
dc.date.available | 2020-12-10T17:27:37Z | |
dc.date.issued | 2020-02-01 | |
dc.description.abstract | We study the orbital stability of standing waves with discontinuous bump-like profile for the nonlinear Schrodinger model with the repulsive delta'-interaction on the line. We consider the model with power non-linearity. In particular, it is shown that such standing waves are unstable in the energy space under some restrictions for parameters. The use of extension theory of symmetric operators by Krein-von Neumann is fundamental for estimating the Morse index of self-adjoint operators associated with our stability study. Moreover, for this purpose we use Sturm oscillation results and analytic perturbation theory. The Perron-Frobenius property for the repulsive delta'-interaction is established. The arguments presented in this investigation have prospects for the study of the stability of stationary waves solutions of other nonlinear evolution equations with point interactions. (C) 2020 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | IME USP, Dept Math, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Basque Center for Applied Mathematics (BCAM), Bilbao/Spain | |
dc.description.sponsorshipId | FAPESP: 2016/07311-0 | |
dc.description.sponsorshipId | FAPESP: 2016/02060-9 | |
dc.description.sponsorshipId | CNPq: 310295/2017-3 | |
dc.format.extent | 24 | |
dc.identifier | http://dx.doi.org/10.1016/j.physd.2020.132332 | |
dc.identifier.citation | Physica D-nonlinear Phenomena. Amsterdam: Elsevier, v. 403, 24 p., 2020. | |
dc.identifier.doi | 10.1016/j.physd.2020.132332 | |
dc.identifier.issn | 0167-2789 | |
dc.identifier.uri | http://hdl.handle.net/11449/195227 | |
dc.identifier.wos | WOS:000517660000003 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Physica D-nonlinear Phenomena | |
dc.source | Web of Science | |
dc.subject | Nonlinear Schrodinger equation | |
dc.subject | Orbital stability | |
dc.subject | Bump solutions | |
dc.subject | Self-adjoint extension | |
dc.subject | Deficiency indices | |
dc.subject | Sturm-Liouville theory | |
dc.title | Stability propertiesproperties of standing waves for NLS equations with the delta'-interaction | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. |