Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot study

dc.contributor.authorEbigbo, Alanna
dc.contributor.authorMendel, Robert
dc.contributor.authorRueckert, Tobias
dc.contributor.authorSchuster, Laurin
dc.contributor.authorProbst, Andreas
dc.contributor.authorManzeneder, Johannes
dc.contributor.authorPrinz, Friederike
dc.contributor.authorMende, Matthias
dc.contributor.authorSteinbrueck, Ingo
dc.contributor.authorFaiss, Siegbert
dc.contributor.authorRauber, David
dc.contributor.authorSouza, Luis A. de [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorDeprez, Pierre H.
dc.contributor.authorOyama, Tsuneo
dc.contributor.authorTakahashi, Akiko
dc.contributor.authorSeewald, Stefan
dc.contributor.authorSharma, Prateek
dc.contributor.authorByrne, Michael F.
dc.contributor.authorPalm, Christoph
dc.contributor.authorMessmann, Helmut
dc.contributor.institutionUniv Klinikum Augsburg
dc.contributor.institutionOstbayer TH Regensburg OTH Regensburg
dc.contributor.institutionOTH Regensburg
dc.contributor.institutionSana Klinikum Lichtenberg
dc.contributor.institutionAsklepios Klin Barmbek
dc.contributor.institutionRegensburg Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCatholic Univ Louvain
dc.contributor.institutionSaku Cent Hosp Adv Care Ctr
dc.contributor.institutionKlin Hirslanden
dc.contributor.institutionVet Affairs Med Ctr
dc.contributor.institutionUniv Kansas
dc.contributor.institutionUniv British Columbia
dc.date.accessioned2021-06-26T02:53:52Z
dc.date.available2021-06-26T02:53:52Z
dc.date.issued2020-11-16
dc.description.abstractBackground The accurate differentiation between T1a and T1b Barrett's-related cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an artificial intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer on white-light images. Methods Endoscopic images from three tertiary care centers in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) were evaluated using the AI system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results The sensitivity, specificity, F1 score, and accuracy of the AI system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.74, and 0.71, respectively. There was no statistically significant difference between the performance of the AI system and that of experts, who showed sensitivity, specificity, F1, and accuracy of 0.63, 0.78, 0.67, and 0.70, respectively. Conclusion This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equally to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and real-life settings. Nevertheless, the correct prediction of submucosal invasion in Barrett's cancer remains challenging for both experts and AI.en
dc.description.affiliationUniv Klinikum Augsburg, Med Klin 3, Stenglinstr 2, D-86156 Augsburg, Germany
dc.description.affiliationOstbayer TH Regensburg OTH Regensburg, Regensburg Med Image Comp ReMIC, Regensburg, Germany
dc.description.affiliationOTH Regensburg, Regensburg Ctr Hlth Sci & Technol RCHST, Regensburg, Germany
dc.description.affiliationSana Klinikum Lichtenberg, Gastroenterol, Berlin, Germany
dc.description.affiliationAsklepios Klin Barmbek, Dept Gastroenterol Hepatol & Intervent Endoscopy, Hamburg, Germany
dc.description.affiliationOTH Regensburg, Regensburg Ctr Biomed Engn RCBE, Regensburg, Germany
dc.description.affiliationRegensburg Univ, Regensburg, Germany
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationCatholic Univ Louvain, Clin Univ St Luc, Brussels, Belgium
dc.description.affiliationSaku Cent Hosp Adv Care Ctr, Nagano, Japan
dc.description.affiliationKlin Hirslanden, GastroZentrum, Zurich, Switzerland
dc.description.affiliationVet Affairs Med Ctr, Dept Gastroenterol & Hepatol, Kansas City, MO USA
dc.description.affiliationUniv Kansas, Sch Med, Kansas City, MO USA
dc.description.affiliationUniv British Columbia, Vancouver Gen Hosp, Div Gastroenterol, Vancouver, BC, Canada
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.sponsorshipBavarian Academic Forum (BayWISS)
dc.format.extent6
dc.identifierhttp://dx.doi.org/10.1055/a-1311-8570
dc.identifier.citationEndoscopy. Stuttgart: Georg Thieme Verlag Kg, 6 p., 2020.
dc.identifier.doi10.1055/a-1311-8570
dc.identifier.issn0013-726X
dc.identifier.urihttp://hdl.handle.net/11449/210686
dc.identifier.wosWOS:000617034700001
dc.language.isoeng
dc.publisherGeorg Thieme Verlag Kg
dc.relation.ispartofEndoscopy
dc.sourceWeb of Science
dc.titleEndoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot studyen
dc.typeArtigo
dcterms.rightsHolderGeorg Thieme Verlag Kg
unesp.author.orcid0000-0001-9468-2871[20]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos