Robust automated cardiac arrhythmia detection in ECG beat signals

dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.authorNunes, Thiago M.
dc.contributor.authorPereira, Danillo R. [UNESP]
dc.contributor.authorLuz, Eduardo Jose da S.
dc.contributor.authorMenotti, David
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.institutionUniv Fortaleza
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Ouro Preto
dc.contributor.institutionUniv Fed Parana
dc.contributor.institutionUniv Porto
dc.date.accessioned2018-11-29T06:59:17Z
dc.date.available2018-11-29T06:59:17Z
dc.date.issued2018-02-01
dc.description.abstractNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.en
dc.description.affiliationUniv Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, Brazil
dc.description.affiliationUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, CE, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
dc.description.affiliationUniv Fed Parana, Dept Informat, Curitiba, PR, Brazil
dc.description.affiliationUniv Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Oporto, Portugal
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipScience and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)''
dc.description.sponsorshipIdCNPq: 470501/2013-8
dc.description.sponsorshipIdCNPq: 301928/2014-2
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdScience and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)'': NORTE-01-0145-FEDER-000022-SciTech
dc.format.extent679-693
dc.identifierhttp://dx.doi.org/10.1007/s00521-016-2472-8
dc.identifier.citationNeural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018.
dc.identifier.doi10.1007/s00521-016-2472-8
dc.identifier.fileWOS000424058500005.pdf
dc.identifier.issn0941-0643
dc.identifier.urihttp://hdl.handle.net/11449/165987
dc.identifier.wosWOS:000424058500005
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofNeural Computing & Applications
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectECG heart beats
dc.subjectElectrophysiological signals
dc.subjectCardiac dysrhythmia classification
dc.subjectFeature extraction
dc.subjectPattern recognition
dc.subjectOptimum-path forest
dc.titleRobust automated cardiac arrhythmia detection in ECG beat signalsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000424058500005.pdf
Tamanho:
702.76 KB
Formato:
Adobe Portable Document Format
Descrição: