Robust automated cardiac arrhythmia detection in ECG beat signals
dc.contributor.author | Albuquerque, Victor Hugo C. de | |
dc.contributor.author | Nunes, Thiago M. | |
dc.contributor.author | Pereira, Danillo R. [UNESP] | |
dc.contributor.author | Luz, Eduardo Jose da S. | |
dc.contributor.author | Menotti, David | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Tavares, Joao Manuel R. S. | |
dc.contributor.institution | Univ Fortaleza | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fed Ouro Preto | |
dc.contributor.institution | Univ Fed Parana | |
dc.contributor.institution | Univ Porto | |
dc.date.accessioned | 2018-11-29T06:59:17Z | |
dc.date.available | 2018-11-29T06:59:17Z | |
dc.date.issued | 2018-02-01 | |
dc.description.abstract | Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. | en |
dc.description.affiliation | Univ Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, Brazil | |
dc.description.affiliation | Univ Fortaleza, Ctr Ciencias Tecnol, Fortaleza, CE, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil | |
dc.description.affiliation | Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil | |
dc.description.affiliation | Univ Fed Parana, Dept Informat, Curitiba, PR, Brazil | |
dc.description.affiliation | Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Oporto, Portugal | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)'' | |
dc.description.sponsorshipId | CNPq: 470501/2013-8 | |
dc.description.sponsorshipId | CNPq: 301928/2014-2 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)'': NORTE-01-0145-FEDER-000022-SciTech | |
dc.format.extent | 679-693 | |
dc.identifier | http://dx.doi.org/10.1007/s00521-016-2472-8 | |
dc.identifier.citation | Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018. | |
dc.identifier.doi | 10.1007/s00521-016-2472-8 | |
dc.identifier.file | WOS000424058500005.pdf | |
dc.identifier.issn | 0941-0643 | |
dc.identifier.uri | http://hdl.handle.net/11449/165987 | |
dc.identifier.wos | WOS:000424058500005 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Neural Computing & Applications | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | ECG heart beats | |
dc.subject | Electrophysiological signals | |
dc.subject | Cardiac dysrhythmia classification | |
dc.subject | Feature extraction | |
dc.subject | Pattern recognition | |
dc.subject | Optimum-path forest | |
dc.title | Robust automated cardiac arrhythmia detection in ECG beat signals | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000424058500005.pdf
- Tamanho:
- 702.76 KB
- Formato:
- Adobe Portable Document Format
- Descrição: