A Markov Random Field Model for Combining Optimum-Path Forest Classifiers Using Decision Graphs and Game Strategy Approach

dc.contributor.authorPonti-, Moacir P.
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorLevada, Alexandre L. M.
dc.contributor.authorMartin, C. S.
dc.contributor.authorKim, S. W.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2020-12-10T19:30:23Z
dc.date.available2020-12-10T19:30:23Z
dc.date.issued2011-01-01
dc.description.abstractThe research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of Off ensembles and the framework to design multiple classifier systems.en
dc.description.affiliationUniv Sao Paulo ICMC USP, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
dc.description.affiliationUNESP, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Sao Carlos DC UFSCar, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationUnespUNESP, Dept Comp, Bauru, SP, Brazil
dc.format.extent581-+
dc.identifier.citationProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications. Berlin: Springer-verlag Berlin, v. 7042, p. 581-+, 2011.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/196009
dc.identifier.wosWOS:000307257600069
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications
dc.sourceWeb of Science
dc.titleA Markov Random Field Model for Combining Optimum-Path Forest Classifiers Using Decision Graphs and Game Strategy Approachen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos