Improving semi-supervised learning through optimum connectivity
dc.contributor.author | Amorim, Willian P. | |
dc.contributor.author | Falcao, Alexandre X. | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Carvalho, Marcelo H. | |
dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:06:13Z | |
dc.date.available | 2018-11-26T17:06:13Z | |
dc.date.issued | 2016-12-01 | |
dc.description.abstract | The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved. | en |
dc.description.affiliation | Fed Univ Mato Grosso UFMS, FACOM Inst Comp, Cidade Univ, BR-79070900 Campo Grande, MS, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Dept Informat Syst, Av Albert Einstein 1251, BR-13083852 Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 303673/2010-9 | |
dc.description.sponsorshipId | CNPq: 479070/2013-0 | |
dc.description.sponsorshipId | CNPq: 302970/2014-2 | |
dc.description.sponsorshipId | CNPq: 303182/2011-3 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | FAPESP: 2013/20387-7 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.format.extent | 72-85 | |
dc.identifier | http://dx.doi.org/10.1016/j.patcog.2016.04.020 | |
dc.identifier.citation | Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016. | |
dc.identifier.doi | 10.1016/j.patcog.2016.04.020 | |
dc.identifier.file | WOS000383525600008.pdf | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.uri | http://hdl.handle.net/11449/161931 | |
dc.identifier.wos | WOS:000383525600008 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Pattern Recognition | |
dc.relation.ispartofsjr | 1,065 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Semi-supervised learning | |
dc.subject | Optimum-path forest classifiers | |
dc.title | Improving semi-supervised learning through optimum connectivity | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000383525600008.pdf
- Tamanho:
- 3.14 MB
- Formato:
- Adobe Portable Document Format
- Descrição: