PAR-COM: A New Methodology for Post-processing Association Rules
dc.contributor.author | Carvalho, Veronica Oliveira de [UNESP] | |
dc.contributor.author | Santos, Fabiano Fernandes dos | |
dc.contributor.author | Rezende, Solange Oliveira | |
dc.contributor.author | Padua, Renan de [UNESP] | |
dc.contributor.author | Zhang, R. | |
dc.contributor.author | Zhang, J. | |
dc.contributor.author | Zhang, Z. | |
dc.contributor.author | Filipe, J. | |
dc.contributor.author | Cordeiro, J. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2020-12-10T22:31:33Z | |
dc.date.available | 2020-12-10T22:31:33Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. | en |
dc.description.affiliation | Univ Estadual Paulista Unesp, Rio Claro, SP, Brazil | |
dc.description.affiliation | Univ Sao Paulo, Sao Carlos, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista Unesp, Rio Claro, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2010/07879-0 | |
dc.format.extent | 66-80 | |
dc.identifier.citation | Enterprise Information Systems, Iceis 2011. Berlin: Springer-verlag Berlin, v. 102, p. 66-80, 2012. | |
dc.identifier.issn | 1865-1348 | |
dc.identifier.uri | http://hdl.handle.net/11449/197437 | |
dc.identifier.wos | WOS:000345339600005 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Enterprise Information Systems, Iceis 2011 | |
dc.source | Web of Science | |
dc.subject | Association rules | |
dc.subject | Post-processing | |
dc.subject | Clustering | |
dc.subject | Objective measures | |
dc.title | PAR-COM: A New Methodology for Post-processing Association Rules | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |