Polynomial Chaos-Kriging metamodel for quantification of the debonding area in large wind turbine blades

Nenhuma Miniatura disponível

Data

2021-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study aims to investigate the performance of a data-driven methodology for quantifying damage based on the use of a metamodel obtained from the Polynomial Chaos-Kriging method. The investigation seeks to quantify the severity of the damage, described by a specific type of debonding in a wind turbine blade as a function of a damage index. The damage indexes used are computed using a data-driven vibration-based structural health monitoring methodology. The blade’s debonding damage is introduced artificially, and the blade is excited with an electromechanical actuator that introduces a mechanical impulse causing the impact on the blade. The acceleration responses’ vibrations are measured by accelerometers distributed along the trailing and the wind turbine blade. A metamodel is formerly obtained through the Polynomial Chaos-Kriging method based on the damage indexes, trained with the blade’s healthy condition and four damage conditions, and validated with the other two damage conditions. The Polynomial Chaos-Kriging manifests promising results for capturing the proper trend for the severity of the damage as a function of the damage index. This research complements the damage detection analyses previously performed on the same blade.

Descrição

Idioma

Inglês

Como citar

Structural Health Monitoring.

Itens relacionados

Financiadores

Coleções