Polynomial Chaos-Kriging metamodel for quantification of the debonding area in large wind turbine blades
dc.contributor.author | Pavlack, Bruna [UNESP] | |
dc.contributor.author | Paixão, Jessé [UNESP] | |
dc.contributor.author | da Silva, Samuel [UNESP] | |
dc.contributor.author | Cunha, Americo | |
dc.contributor.author | García Cava, David | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | IFMS—Instituto Federal de Mato Grosso do Sul | |
dc.contributor.institution | Universidade do Estado do Rio de Janeiro (UERJ) | |
dc.contributor.institution | Institute for Infrastructure and Environment | |
dc.date.accessioned | 2021-06-25T10:30:19Z | |
dc.date.available | 2021-06-25T10:30:19Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | This study aims to investigate the performance of a data-driven methodology for quantifying damage based on the use of a metamodel obtained from the Polynomial Chaos-Kriging method. The investigation seeks to quantify the severity of the damage, described by a specific type of debonding in a wind turbine blade as a function of a damage index. The damage indexes used are computed using a data-driven vibration-based structural health monitoring methodology. The blade’s debonding damage is introduced artificially, and the blade is excited with an electromechanical actuator that introduces a mechanical impulse causing the impact on the blade. The acceleration responses’ vibrations are measured by accelerometers distributed along the trailing and the wind turbine blade. A metamodel is formerly obtained through the Polynomial Chaos-Kriging method based on the damage indexes, trained with the blade’s healthy condition and four damage conditions, and validated with the other two damage conditions. The Polynomial Chaos-Kriging manifests promising results for capturing the proper trend for the severity of the damage as a function of the damage index. This research complements the damage detection analyses previously performed on the same blade. | en |
dc.description.affiliation | Departamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista | |
dc.description.affiliation | IFMS—Instituto Federal de Mato Grosso do Sul | |
dc.description.affiliation | Universidade do Estado do Rio de Janeiro | |
dc.description.affiliation | University of Edinburgh School of Engineering Institute for Infrastructure and Environment | |
dc.description.affiliationUnesp | Departamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista | |
dc.identifier | http://dx.doi.org/10.1177/14759217211007956 | |
dc.identifier.citation | Structural Health Monitoring. | |
dc.identifier.doi | 10.1177/14759217211007956 | |
dc.identifier.issn | 1741-3168 | |
dc.identifier.issn | 1475-9217 | |
dc.identifier.scopus | 2-s2.0-85105754697 | |
dc.identifier.uri | http://hdl.handle.net/11449/206335 | |
dc.language.iso | eng | |
dc.relation.ispartof | Structural Health Monitoring | |
dc.source | Scopus | |
dc.subject | damage features | |
dc.subject | damage quantification | |
dc.subject | data-driven metamodel | |
dc.subject | Polynomial Chaos-Kriging | |
dc.subject | Structural health monitoring | |
dc.subject | wind turbine blades | |
dc.title | Polynomial Chaos-Kriging metamodel for quantification of the debonding area in large wind turbine blades | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0002-6807-0916[1] | |
unesp.author.orcid | 0000-0002-2035-0986[2] | |
unesp.author.orcid | 0000-0001-6430-3746[3] | |
unesp.author.orcid | 0000-0002-8342-0363[4] | |
unesp.author.orcid | 0000-0002-3841-6824[5] |