Polynomial Chaos-Kriging metamodel for quantification of the debonding area in large wind turbine blades

dc.contributor.authorPavlack, Bruna [UNESP]
dc.contributor.authorPaixão, Jessé [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorCunha, Americo
dc.contributor.authorGarcía Cava, David
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionIFMS—Instituto Federal de Mato Grosso do Sul
dc.contributor.institutionUniversidade do Estado do Rio de Janeiro (UERJ)
dc.contributor.institutionInstitute for Infrastructure and Environment
dc.date.accessioned2021-06-25T10:30:19Z
dc.date.available2021-06-25T10:30:19Z
dc.date.issued2021-01-01
dc.description.abstractThis study aims to investigate the performance of a data-driven methodology for quantifying damage based on the use of a metamodel obtained from the Polynomial Chaos-Kriging method. The investigation seeks to quantify the severity of the damage, described by a specific type of debonding in a wind turbine blade as a function of a damage index. The damage indexes used are computed using a data-driven vibration-based structural health monitoring methodology. The blade’s debonding damage is introduced artificially, and the blade is excited with an electromechanical actuator that introduces a mechanical impulse causing the impact on the blade. The acceleration responses’ vibrations are measured by accelerometers distributed along the trailing and the wind turbine blade. A metamodel is formerly obtained through the Polynomial Chaos-Kriging method based on the damage indexes, trained with the blade’s healthy condition and four damage conditions, and validated with the other two damage conditions. The Polynomial Chaos-Kriging manifests promising results for capturing the proper trend for the severity of the damage as a function of the damage index. This research complements the damage detection analyses previously performed on the same blade.en
dc.description.affiliationDepartamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista
dc.description.affiliationIFMS—Instituto Federal de Mato Grosso do Sul
dc.description.affiliationUniversidade do Estado do Rio de Janeiro
dc.description.affiliationUniversity of Edinburgh School of Engineering Institute for Infrastructure and Environment
dc.description.affiliationUnespDepartamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.1177/14759217211007956
dc.identifier.citationStructural Health Monitoring.
dc.identifier.doi10.1177/14759217211007956
dc.identifier.issn1741-3168
dc.identifier.issn1475-9217
dc.identifier.scopus2-s2.0-85105754697
dc.identifier.urihttp://hdl.handle.net/11449/206335
dc.language.isoeng
dc.relation.ispartofStructural Health Monitoring
dc.sourceScopus
dc.subjectdamage features
dc.subjectdamage quantification
dc.subjectdata-driven metamodel
dc.subjectPolynomial Chaos-Kriging
dc.subjectStructural health monitoring
dc.subjectwind turbine blades
dc.titlePolynomial Chaos-Kriging metamodel for quantification of the debonding area in large wind turbine bladesen
dc.typeArtigo
unesp.author.orcid0000-0002-6807-0916[1]
unesp.author.orcid0000-0002-2035-0986[2]
unesp.author.orcid0000-0001-6430-3746[3]
unesp.author.orcid0000-0002-8342-0363[4]
unesp.author.orcid0000-0002-3841-6824[5]

Arquivos

Coleções