Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Visual approach to support analysis of optimum-path forest classifier

Nenhuma Miniatura disponível

Data

2019-10-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Optimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole.

Descrição

Idioma

Inglês

Como citar

Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782.

Itens relacionados

Financiadores