Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A new bayesian Poisson denoising algorithm based on nonlocal means and stochastic distances

dc.contributor.authorEvangelista, Rodrigo C.
dc.contributor.authorSalvadeo, Denis H.P. [UNESP]
dc.contributor.authorMascarenhas, Nelson D.A.
dc.contributor.institutionCentro Universitário Campo Limpo Paulista (UNIFACCAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2022-04-28T19:46:58Z
dc.date.available2022-04-28T19:46:58Z
dc.date.issued2022-02-01
dc.description.abstractPoisson noise is the main cause of degradation of many imaging modalities. However, many of the proposed methods for reducing noise in images lack a formal approach. Our work develops a new, general, formal and computationally efficient bayesian Poisson denoising algorithm, based on the Nonlocal Means framework and replacing the euclidean distance by stochastic distances, which are more appropriate for the denoising problem. It takes advantage of the conjugacy of Poisson and gamma distributions to obtain its computational efficiency. When dealing with low dose CT images, the algorithm operates on the sinogram, modeling the rates of the Poisson noise by the Gamma distribution. Based on the Bayesian formulation and the conjugacy property, the likelihood follows the Poisson distribution, while the a posteriori distribution is also described by the Gamma distribution. The derived algorithm is applied to simulated and real low-dose CT images and compared to several algorithms proposed in the literature, with competitive results.en
dc.description.affiliationCentro Universitário Campo Limpo Paulista (UNIFACCAMP)
dc.description.affiliationInstitute of Geosciences and Exact Sciences São Paulo State University (UNESP)
dc.description.affiliationComputing Department Federal University of São Carlos (UFSCar)
dc.description.affiliationUnespInstitute of Geosciences and Exact Sciences São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1016/j.patcog.2021.108363
dc.identifier.citationPattern Recognition, v. 122.
dc.identifier.doi10.1016/j.patcog.2021.108363
dc.identifier.issn0031-3203
dc.identifier.scopus2-s2.0-85118613484
dc.identifier.urihttp://hdl.handle.net/11449/222812
dc.language.isoeng
dc.relation.ispartofPattern Recognition
dc.sourceScopus
dc.subjectBayesian estimation
dc.subjectConjugate distributions
dc.subjectLow dose CT
dc.subjectNonlocal means
dc.subjectPoisson denoising
dc.subjectStochastic distances
dc.titleA new bayesian Poisson denoising algorithm based on nonlocal means and stochastic distancesen
dc.typeNota

Arquivos

Coleções