Geometric singular perturbartion theory for non-smooth dynamical systems
Nenhuma Miniatura disponível
Data
2014
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014.