Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

Nenhuma Miniatura disponível

Data

2021-10-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.

Descrição

Idioma

Inglês

Como citar

Metrika, v. 84, n. 7, p. 1049-1080, 2021.

Itens relacionados

Coleções