DEEP FEATURES EXTRACTION FOR ROBUST FINGERPRINT SPOOFING ATTACK DETECTION

dc.contributor.authorSouza, Gustavo Botelho de
dc.contributor.authorSilva Santos, Daniel Felipe da [UNESP]
dc.contributor.authorPires, Rafael Goncalves
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T21:10:57Z
dc.date.available2019-10-04T21:10:57Z
dc.date.issued2019-01-01
dc.description.abstractBiometric systems have been widely considered as a synonym of security. However, in recent years, malicious people are violating them by presenting forged traits, such as gelatin fingers, to fool their capture sensors (spoofing attacks). To detect such frauds, methods based on traditional image descriptors have been developed, aiming liveness detection from the input data. However, due to their handcrafted approaches, most of them present low accuracy rates in challenging scenarios. In this work, we propose a novel method for fingerprint spoofing detection using the Deep Boltzmann Machines (DBM) for extraction of high-level features from the images. Such deep features are very discriminative, thus making complicated the task of forgery by attackers. Experiments show that the proposed method outperforms other state-of-the-art techniques, presenting high accuracy regarding attack detection.en
dc.description.affiliationUniv Fed Sao Carlos, UFSCar, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/05522-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCAPES: 88881.132647/2016-01
dc.format.extent41-49
dc.identifierhttp://dx.doi.org/10.2478/jaiscr-2018-0023
dc.identifier.citationJournal Of Artificial Intelligence And Soft Computing Research. Warsaw: Sciendo, v. 9, n. 1, p. 41-49, 2019.
dc.identifier.doi10.2478/jaiscr-2018-0023
dc.identifier.issn2083-2567
dc.identifier.urihttp://hdl.handle.net/11449/186417
dc.identifier.wosWOS:000442422700003
dc.language.isoeng
dc.publisherSciendo
dc.relation.ispartofJournal Of Artificial Intelligence And Soft Computing Research
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectRestricted Boltzmann Machines
dc.subjectDeep Boltzmann Machines
dc.subjectDeep Learning
dc.subjectFingerprint Spoofing Detection
dc.subjectBiometrics
dc.titleDEEP FEATURES EXTRACTION FOR ROBUST FINGERPRINT SPOOFING ATTACK DETECTIONen
dc.typeArtigo
dcterms.rightsHolderSciendo
unesp.author.lattes6027713750942689[4]
unesp.author.orcid0000-0003-4861-7061[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos