Coffee pest severity by agrometeorological models in subtropical climate
Nenhuma Miniatura disponível
Data
2022-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
This study aimed to estimate the number of generations and cycle duration of the southern red mite, coffee berry borer, and coffee leaf miner using the thermal index to assist in controlling these main coffee pests in the state of Paraná, Brazil. The data of maximum and minimum air temperature (°C) and precipitation (mm) of all municipalities in the state from 1984 to 2018 were collected from the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER). The reference evapotranspiration was estimated using the (Camargo Campinas IAC Boletim 116:9, 1971) method and the water balance was calculated using the method of (Thornthwaite C, Mather J (1955) The water balance publications in climatology, 8 (1). DIT, Laboratory of climatology, Centerton, NJ, USA). The basal temperature of each pest minus the average temperature of the years was used to calculate the degrees-day, the duration of the pest cycle, and the number of generations per year. The influence of altitude on the development of coffee pests was measured using the Pearson correlation. The thermal index is able to estimate the damage caused by coffee pests in the state of Pará, Brazil. Coffee pests show greater severity in the north of Paraná, in the regions with the highest temperatures. It is the same region that concentrates most of the coffee production of the state. The results of the life cycle and number of generations were interpolated for the entire state using the kriging method. Coffee pests showed the highest severity in the north region of the state of Paraná, more specifically in the Northwest, North Central, and West Central mesoregions. These regions have concentrated most of the state’s coffee production. Mesoregions with the highest coffee production in the state showed higher susceptibility to coffee pests. Altitude showed a high correlation (r > 0.6) with the cycle variability and number of generations of coffee pests. The average cycles of the coffee berry borer, coffee leaf miner, and southern red mite are 24.13 (± 8.34), 45.64 (± 18.61), and 21.51 (± 3.51) days, respectively. The average annual generation was 16.67 (± 4.77), 9.02 (± 2.75), and 17.32 (± 2.63) generations, for the coffee berry borer, the coffee red mite, and the southern red mite, respectively.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
International Journal of Biometeorology.