String-averaging expectation-maximization for maximum likelihood estimation in emission tomography

dc.contributor.authorHelou, Elias Salomao [UNESP]
dc.contributor.authorCensor, Yair
dc.contributor.authorChen, Tai-Been
dc.contributor.authorChern, I-Liang
dc.contributor.authorDe Pierro, Alvaro Rodolfo [UNESP]
dc.contributor.authorJiang, Ming
dc.contributor.authorLu, Henry Horng-Shing
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Haifa
dc.contributor.institutionI Shou Univ
dc.contributor.institutionNatl Chiao Tung Univ
dc.contributor.institutionNatl Taiwan Univ
dc.contributor.institutionPeking Univ
dc.date.accessioned2014-12-03T13:09:00Z
dc.date.available2014-12-03T13:09:00Z
dc.date.issued2014-05-01
dc.description.abstractWe study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called string-averaging expectation maximization (SAEM). In the string-averaging algorithmic regime, the index set of all underlying equations is split into subsets, called 'strings', and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points of all strings are averaged to form the next iterate. SAEM algorithms with several strings present better practical merits than the classical row-action maximum-likelihood algorithm. We present numerical experiments showing the effectiveness of the algorithmic scheme, using data of image reconstruction problems. Performance is evaluated from the computational cost and reconstruction quality viewpoints. A complete convergence theory is also provided.en
dc.description.affiliationState Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Haifa, Dept Math, IL-3190501 Haifa, Israel
dc.description.affiliationI Shou Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 82445, Taiwan
dc.description.affiliationNatl Chiao Tung Univ, Ctr Math Modeling & Sci Comp, Dept Appl Math, Hsinchu 30010, Taiwan
dc.description.affiliationNatl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
dc.description.affiliationPeking Univ, Beijing Int Ctr Math Res, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
dc.description.affiliationNatl Chiao Tung Univ, Inst Stat, Hsinchu 30010, Taiwan
dc.description.affiliationUnespState Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipUnited States-Israel Binational Science Foundation (BSF)
dc.description.sponsorshipUS Department of Army award
dc.description.sponsorshipNational Science Council of the Republic of China, Taiwan
dc.description.sponsorshipNational Center for Theoretical Sciences (Taipei Office)
dc.description.sponsorshipNational Science Council of the Republic of China
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipNational Basic Research and Development Program of China (973 Program)
dc.description.sponsorshipNational Science Foundation of China
dc.description.sponsorshipNational Science Council
dc.description.sponsorshipNational Center for Theoretical Sciences
dc.description.sponsorshipCenter of Mathematical Modeling and Scientific Computing at National Chiao Tung University in Taiwan
dc.description.sponsorshipIdFAPESP: 13/16508-3
dc.description.sponsorshipIdUnited States-Israel Binational Science Foundation (BSF)200912
dc.description.sponsorshipIdUS Department of Army awardW81XWH-10-1-0170
dc.description.sponsorshipIdNational Science Council of the Republic of China, TaiwanNSC 97-2118-M-214-001-MY2
dc.description.sponsorshipIdNational Science Council of the Republic of ChinaNSC 99-2115-M-002-003-MY3
dc.description.sponsorshipIdCNPq: 301064/2009-1
dc.description.sponsorshipIdNational Basic Research and Development Program of China (973 Program)2011CB809105
dc.description.sponsorshipIdNational Science Foundation of China61121002
dc.description.sponsorshipIdNational Science Foundation of China10990013
dc.description.sponsorshipIdNational Science Foundation of China60325101
dc.format.extent20
dc.identifierhttp://dx.doi.org/10.1088/0266-5611/30/5/055003
dc.identifier.citationInverse Problems. Bristol: Iop Publishing Ltd, v. 30, n. 5, 20 p., 2014.
dc.identifier.doi10.1088/0266-5611/30/5/055003
dc.identifier.issn0266-5611
dc.identifier.urihttp://hdl.handle.net/11449/111820
dc.identifier.wosWOS:000336265400003
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofInverse Problems
dc.relation.ispartofjcr1.946
dc.relation.ispartofsjr1,209
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectpositron emission tomography (PET)en
dc.subjectstring-averagingen
dc.subjectblock-iterativeen
dc.subjectexpectation-maximization (EM) algorithmen
dc.subjectordered subsets expectation maximization (OSEM) algorithmen
dc.subjectrelaxed EMen
dc.subjectstring-averaging EM algorithmen
dc.titleString-averaging expectation-maximization for maximum likelihood estimation in emission tomographyen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
unesp.author.orcid0000-0002-1661-0538[6]
unesp.author.orcid0000-0001-5157-3851[1]
unesp.author.orcid0000-0003-1306-7936[4]

Arquivos

Coleções