String-averaging expectation-maximization for maximum likelihood estimation in emission tomography
dc.contributor.author | Helou, Elias Salomao [UNESP] | |
dc.contributor.author | Censor, Yair | |
dc.contributor.author | Chen, Tai-Been | |
dc.contributor.author | Chern, I-Liang | |
dc.contributor.author | De Pierro, Alvaro Rodolfo [UNESP] | |
dc.contributor.author | Jiang, Ming | |
dc.contributor.author | Lu, Henry Horng-Shing | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Haifa | |
dc.contributor.institution | I Shou Univ | |
dc.contributor.institution | Natl Chiao Tung Univ | |
dc.contributor.institution | Natl Taiwan Univ | |
dc.contributor.institution | Peking Univ | |
dc.date.accessioned | 2014-12-03T13:09:00Z | |
dc.date.available | 2014-12-03T13:09:00Z | |
dc.date.issued | 2014-05-01 | |
dc.description.abstract | We study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called string-averaging expectation maximization (SAEM). In the string-averaging algorithmic regime, the index set of all underlying equations is split into subsets, called 'strings', and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points of all strings are averaged to form the next iterate. SAEM algorithms with several strings present better practical merits than the classical row-action maximum-likelihood algorithm. We present numerical experiments showing the effectiveness of the algorithmic scheme, using data of image reconstruction problems. Performance is evaluated from the computational cost and reconstruction quality viewpoints. A complete convergence theory is also provided. | en |
dc.description.affiliation | State Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Univ Haifa, Dept Math, IL-3190501 Haifa, Israel | |
dc.description.affiliation | I Shou Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 82445, Taiwan | |
dc.description.affiliation | Natl Chiao Tung Univ, Ctr Math Modeling & Sci Comp, Dept Appl Math, Hsinchu 30010, Taiwan | |
dc.description.affiliation | Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan | |
dc.description.affiliation | Peking Univ, Beijing Int Ctr Math Res, Sch Math Sci, LMAM, Beijing 100871, Peoples R China | |
dc.description.affiliation | Natl Chiao Tung Univ, Inst Stat, Hsinchu 30010, Taiwan | |
dc.description.affiliationUnesp | State Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | United States-Israel Binational Science Foundation (BSF) | |
dc.description.sponsorship | US Department of Army award | |
dc.description.sponsorship | National Science Council of the Republic of China, Taiwan | |
dc.description.sponsorship | National Center for Theoretical Sciences (Taipei Office) | |
dc.description.sponsorship | National Science Council of the Republic of China | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | National Basic Research and Development Program of China (973 Program) | |
dc.description.sponsorship | National Science Foundation of China | |
dc.description.sponsorship | National Science Council | |
dc.description.sponsorship | National Center for Theoretical Sciences | |
dc.description.sponsorship | Center of Mathematical Modeling and Scientific Computing at National Chiao Tung University in Taiwan | |
dc.description.sponsorshipId | FAPESP: 13/16508-3 | |
dc.description.sponsorshipId | United States-Israel Binational Science Foundation (BSF)200912 | |
dc.description.sponsorshipId | US Department of Army awardW81XWH-10-1-0170 | |
dc.description.sponsorshipId | National Science Council of the Republic of China, TaiwanNSC 97-2118-M-214-001-MY2 | |
dc.description.sponsorshipId | National Science Council of the Republic of ChinaNSC 99-2115-M-002-003-MY3 | |
dc.description.sponsorshipId | CNPq: 301064/2009-1 | |
dc.description.sponsorshipId | National Basic Research and Development Program of China (973 Program)2011CB809105 | |
dc.description.sponsorshipId | National Science Foundation of China61121002 | |
dc.description.sponsorshipId | National Science Foundation of China10990013 | |
dc.description.sponsorshipId | National Science Foundation of China60325101 | |
dc.format.extent | 20 | |
dc.identifier | http://dx.doi.org/10.1088/0266-5611/30/5/055003 | |
dc.identifier.citation | Inverse Problems. Bristol: Iop Publishing Ltd, v. 30, n. 5, 20 p., 2014. | |
dc.identifier.doi | 10.1088/0266-5611/30/5/055003 | |
dc.identifier.issn | 0266-5611 | |
dc.identifier.uri | http://hdl.handle.net/11449/111820 | |
dc.identifier.wos | WOS:000336265400003 | |
dc.language.iso | eng | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.ispartof | Inverse Problems | |
dc.relation.ispartofjcr | 1.946 | |
dc.relation.ispartofsjr | 1,209 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | positron emission tomography (PET) | en |
dc.subject | string-averaging | en |
dc.subject | block-iterative | en |
dc.subject | expectation-maximization (EM) algorithm | en |
dc.subject | ordered subsets expectation maximization (OSEM) algorithm | en |
dc.subject | relaxed EM | en |
dc.subject | string-averaging EM algorithm | en |
dc.title | String-averaging expectation-maximization for maximum likelihood estimation in emission tomography | en |
dc.type | Artigo | |
dcterms.license | http://iopscience.iop.org/page/copyright | |
dcterms.rightsHolder | Iop Publishing Ltd | |
unesp.author.orcid | 0000-0002-1661-0538[6] | |
unesp.author.orcid | 0000-0001-5157-3851[1] | |
unesp.author.orcid | 0000-0003-1306-7936[4] |