VERY RAPIDLY VARYING BOUNDARIES IN EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS. THE CASE of A NON UNIFORMLY LIPSCHITZ DEFORMATION
dc.contributor.author | Arrieta, Jose M. | |
dc.contributor.author | Bruschi, Simone M. [UNESP] | |
dc.contributor.institution | Univ Complutense Madrid | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2013-09-30T18:51:18Z | |
dc.date.accessioned | 2014-05-20T14:17:06Z | |
dc.date.available | 2013-09-30T18:51:18Z | |
dc.date.available | 2014-05-20T14:17:06Z | |
dc.date.issued | 2010-09-01 | |
dc.description.abstract | We continue the analysis started in [3] and announced in [2], studying the behavior of solutions of nonlinear elliptic equations Delta u + f(x, u) = 0 in Omega(epsilon) with nonlinear boundary conditions of type partial derivative u/partial derivative n + g(x, u) = 0, when the boundary of the domain varies very rapidly. We show that if the oscillations are very rapid, in the sense that, roughly speaking, its period is much smaller than its amplitude and the function g is of a dissipative type, that is, it satisfies g(x, u)u >= b vertical bar u vertical bar(d+1), then the boundary condition in the limit problem is u = 0, that is, we obtain a homogeneus Dirichlet boundary condition. We show the convergence of solutions in H(1) and C(0) norms and the convergence of the eigenvalues and eigenfunctions of the linearizations around the solutions. Moreover, if a solution of the limit problem is hyperbolic (non degenerate) and some extra conditions in g are satisfied, then we show that there exists one and only one solution of the perturbed problem nearby. | en |
dc.description.affiliation | Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain | |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | |
dc.description.sponsorship | MICINN | |
dc.description.sponsorship | DGES, Spain | |
dc.description.sponsorship | BSCH-UCM, Spain | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | MICINN: PHB2006-003 PC | |
dc.description.sponsorshipId | MICINN: PR2009-0027 | |
dc.description.sponsorshipId | DGES, Spain: MTM 2006 08262 | |
dc.description.sponsorshipId | DGES, Spain: MTM2009-07540 | |
dc.description.sponsorshipId | DGES, Spain: MTM2006-08262 | |
dc.description.sponsorshipId | BSCH-UCM, Spain: GR58/08 | |
dc.description.sponsorshipId | BSCH-UCM, Spain: Grupo 920894 | |
dc.description.sponsorshipId | FAPESP: 04/06020-4 | |
dc.format.extent | 327-351 | |
dc.identifier | http://dx.doi.org/10.3934/dcdsb.2010.14.327 | |
dc.identifier.citation | Discrete and Continuous Dynamical Systems-series B. Springfield: Amer Inst Mathematical Sciences, v. 14, n. 2, p. 327-351, 2010. | |
dc.identifier.doi | 10.3934/dcdsb.2010.14.327 | |
dc.identifier.issn | 1531-3492 | |
dc.identifier.uri | http://hdl.handle.net/11449/25126 | |
dc.identifier.wos | WOS:000278676200003 | |
dc.language.iso | eng | |
dc.publisher | Amer Inst Mathematical Sciences | |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems: Series B | |
dc.relation.ispartofjcr | 0.972 | |
dc.relation.ispartofsjr | 0,864 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Varying boundary | en |
dc.subject | oscillations | en |
dc.subject | nonlinear boundary conditions | en |
dc.subject | elliptic equations | en |
dc.title | VERY RAPIDLY VARYING BOUNDARIES IN EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS. THE CASE of A NON UNIFORMLY LIPSCHITZ DEFORMATION | en |
dc.type | Artigo | |
dcterms.license | http://aimsciences.org/journals/tex-sample/CopyRightAgreement.pdf | |
dcterms.rightsHolder | Amer Inst Mathematical Sciences | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: