Characterization of Optimized TiO2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance

dc.contributor.authorNogueira, Ricardo Pereira
dc.contributor.authorUchoa, Jose Deuzimar
dc.contributor.authorHilario, Fanny
dc.contributor.authorSantana-Melo, Gabriela de Fatima [UNESP]
dc.contributor.authorReis de Vasconcellos, Luana Marotta [UNESP]
dc.contributor.authorMarciano, Fernanda Roberta
dc.contributor.authorRoche, Virginie
dc.contributor.authorJorge Junior, Alberto Moreira
dc.contributor.authorLobo, Anderson Oliveira
dc.contributor.institutionKhalifa Univ Sci & Technol
dc.contributor.institutionUniv Grenoble Alpes
dc.contributor.institutionFed Inst Educ Sci & Technol Piaui
dc.contributor.institutionUFPI Fed Univ Piaui
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Piaui
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2021-06-25T12:35:02Z
dc.date.available2021-06-25T12:35:02Z
dc.date.issued2021-01-01
dc.description.abstractBackground: Nanostructured surface modifications of Ti-based biomaterials are moving up from a highly-promising to a successfully-implemented approach to developing safe and reliable implants. Methods: The study's main objective is to help consolidate the knowledge and identify the more suitable experimental strategies related to TiO2 nanotubes-modified surfaces. In this sense, it proposes the thorough investigation of two optimized nanotubes morphologies in terms of their biological activity (cell cytotoxicity, alkaline phosphatase activity, alizarin red mineralization test, and cellular adhesion) and their electrochemical behavior in simulated body fluid (SBF) electrolyte. Layers of small-short and large-long nanotubes were prepared and investigated in their amorphous and crystallized states and compared to non-anodized samples. Results: Results show that much more than the surface area development associated with the nanotubes' growth; it is the heat treatment-induced change from amorphous to crystalline anatase-rutile structures that ensure enhanced biological activity coupled to high corrosion resistance. Conclusion: Compared to both non-anodized and amorphous nanotubes layers, the crystallized nano-structures' outstanding bioactivity was related to the remarkable increase in their hydrophilic behavior, while the enhanced electrochemical stability was ascribed to the thickening of the dense ruble barrier layer at the Ti surface beneath the nanotubes.en
dc.description.affiliationKhalifa Univ Sci & Technol, Chem Engn Dept, Abu Dhabi 127788, U Arab Emirates
dc.description.affiliationUniv Grenoble Alpes, Univ Savoie Mt Blanc, GrenoblelNP LEPMI, CNRS, F-38000 Grenoble, France
dc.description.affiliationFed Inst Educ Sci & Technol Piaui, BR-64053390 Teresina, Brazil
dc.description.affiliationUFPI Fed Univ Piaui, Interdisciplinary Lab Adv Mat, BioMatLab Grp, Mat Sci & Engn Grad Program, BR-64049550 Teresina, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Biosci & Oral Diag, Inst Sci & Technol, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationUniv Fed Piaui, Dept Phys, BR-64049550 Teresina, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Mat Engn, BR-13565905 Sao Carlos, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Biosci & Oral Diag, Inst Sci & Technol, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.sponsorshipFrench Committee for the Evaluation of Academic and Scientific Cooperation with Brazil (COFECUB)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 88887.321581/2019-00
dc.description.sponsorshipIdFAPESP: 2012/13179-6
dc.description.sponsorshipIdCNPq: 311531/2020-2
dc.description.sponsorshipIdCNPq: 301429/2017-0
dc.description.sponsorshipIdCNPq: 409847/2016-0
dc.description.sponsorshipIdCNPq: 310883/2020-2
dc.description.sponsorshipIdCNPq: 404683/2018-5
dc.format.extent667-682
dc.identifierhttp://dx.doi.org/10.2147/IJN.S285805
dc.identifier.citationInternational Journal Of Nanomedicine. Albany: Dove Medical Press Ltd, v. 16, p. 667-682, 2021.
dc.identifier.doi10.2147/IJN.S285805
dc.identifier.issn1178-2013
dc.identifier.urihttp://hdl.handle.net/11449/209964
dc.identifier.wosWOS:000611668100001
dc.language.isoeng
dc.publisherDove Medical Press Ltd
dc.relation.ispartofInternational Journal Of Nanomedicine
dc.sourceWeb of Science
dc.subjectsurface modification
dc.subjectTiO2 nanotubes
dc.subjectcommercially pure titanium
dc.subjectbioactivity
dc.titleCharacterization of Optimized TiO2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistanceen
dc.typeArtigo
dcterms.rightsHolderDove Medical Press Ltd
unesp.author.orcid0000-0003-4344-0578[5]
unesp.author.orcid0000-0002-2544-0438[9]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, São José dos Campospt
unesp.departmentBiociências e Diagnóstico Bucal - ICTpt

Arquivos