Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy

dc.contributor.authorAlbuquerque, Victor Hugo Costa de
dc.contributor.authorBarbosa, Cleisson Vieira
dc.contributor.authorSilva, Cleiton Carvalho
dc.contributor.authorMoura, Elineudo Pinho de
dc.contributor.authorRebouças Filho, Pedro Pedrosa
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorTavares, João Manuel Ribeiro da Silva
dc.contributor.institutionUniversidade de Fortaleza (UNIFOR)
dc.contributor.institutionUniversidade Federal do Ceará (UFC)
dc.contributor.institutionInstituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade do Porto
dc.date.accessioned2015-12-07T15:34:46Z
dc.date.available2015-12-07T15:34:46Z
dc.date.issued2015
dc.description.abstractSecondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed.en
dc.description.affiliationUniversidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de Materiais
dc.description.affiliationUniversidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de Materiais
dc.description.affiliationUniversidade do Porto, Departamento de Engenharia Mecânica, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial,
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Computação, Faculdade de Ciências de Bauru
dc.description.sponsorshipFinanciadora de Estudos e Projetos (FINEP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 470501/2013-8
dc.description.sponsorshipIdCNPq: 301928/2014-2
dc.format.extent12474-12497
dc.identifierhttp://dx.doi.org/10.3390/s150612474
dc.identifier.citationSensors (Basel, Switzerland), v. 15, n. 6, p. 12474-12497, 2015.
dc.identifier.doi10.3390/s150612474
dc.identifier.filePMC4507598.pdf
dc.identifier.issn1424-8220
dc.identifier.lattes9039182932747194
dc.identifier.pmcPMC4507598
dc.identifier.pubmed26024416
dc.identifier.urihttp://hdl.handle.net/11449/131395
dc.language.isoeng
dc.relation.ispartofSensors (Basel, Switzerland)
dc.relation.ispartofjcr2.475
dc.relation.ispartofsjr0,584
dc.rights.accessRightsAcesso aberto
dc.sourcePubMed
dc.subjectMetric functionen
dc.subjectMicrostructural characterizationen
dc.subjectOptimum path foresten
dc.subjectSignal classificationen
dc.subjectUltrasonic sensoren
dc.titleUltrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloyen
dc.typeArtigo
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0002-6494-7514[6]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
PMC4507598.pdf
Tamanho:
617.22 KB
Formato:
Adobe Portable Document Format