Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials

dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorNakamura, Rodrigo Y.M. [UNESP]
dc.contributor.authorDe Albuquerque, Victor Hugo C.
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.authorTavares, João Manuel R.S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de Fortaleza
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Do Porto
dc.date.accessioned2014-05-27T11:28:17Z
dc.date.available2014-05-27T11:28:17Z
dc.date.issued2013-02-01
dc.description.abstractThe automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Departamento de Computação, Bauru
dc.description.affiliationPrograma de Pós-Graduação em Informática Aplicada Universidade de Fortaleza, Fortaleza
dc.description.affiliationUniversidade de Campinas Instituto de Computação, Campinas
dc.description.affiliationFaculdade de Engenharia Universidade Do Porto, Porto
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Departamento de Computação, Bauru
dc.format.extent590-597
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.07.062
dc.identifier.citationExpert Systems with Applications, v. 40, n. 2, p. 590-597, 2013.
dc.identifier.doi10.1016/j.eswa.2012.07.062
dc.identifier.issn0957-4174
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-84867677551
dc.identifier.urihttp://hdl.handle.net/11449/74468
dc.identifier.wosWOS:000310945000020
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofjcr3.768
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectComputer classifiers
dc.subjectComputer methods
dc.subjectGray and malleable cast irons
dc.subjectMaterial characterization
dc.subjectNodular
dc.subjectOtsu's method
dc.subjectBinarize
dc.subjectComplex methods
dc.subjectComputer techniques
dc.subjectGraphite particles
dc.subjectIndustrial materials
dc.subjectMachine learning classification
dc.subjectMalleable cast iron
dc.subjectMaterial characterizations
dc.subjectMechanical properties of materials
dc.subjectMetallographic images
dc.subjectOptimum-path forests
dc.subjectForestry
dc.subjectGraphite
dc.subjectIndustry
dc.subjectMalleable iron castings
dc.subjectMechanical properties
dc.subjectMetallography
dc.subjectCharacterization
dc.subjectCastings
dc.subjectClassifiers
dc.subjectComputers
dc.subjectIron
dc.subjectMechanical Properties
dc.titleComputer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materialsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0002-6494-7514[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos