Effect of electron magnetic trapping in a plasma immersion ion implantation system

Nenhuma Miniatura disponível




Kostov, K. G. [UNESP]
Algatti, M. A. [UNESP]
Pillaca, E. J. D. M. [UNESP]
Kayama, M. E. [UNESP]
Mota, Rogério Pinto [UNESP]
Honda, Roberto Yzumi [UNESP]

Título da Revista

ISSN da Revista

Título de Volume




In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.



Como citar

European Physical Journal D. New York: Springer, v. 54, n. 2, p. 205-209, 2009.