Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Effective, efficient, and scalable unsupervised distance learning in image retrieval tasks

dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorPedronette, Daniel Carlos Guimarães [UNESP]
dc.contributor.authorDa Torres, Ricardo S.
dc.contributor.authorBorin, Edson
dc.contributor.authorAlmeida, Jurandy
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T16:41:40Z
dc.date.available2018-12-11T16:41:40Z
dc.date.issued2015-06-22
dc.description.abstractVarious unsupervised learning methods have been proposed with significant improvements in the effectiveness of image search systems. However, despite the relevant effectiveness gains, these approaches commonly require high computation efforts, not addressing properly efficiency and scalability requirements. In this paper, we present a novel unsupervised learning approach for improving the effectiveness of image retrieval tasks. The proposed method is also scalable and efficient as it exploits parallel and heterogeneous computing on CPU and GPU devices. Extensive experiments were conducted considering five different public image collections and several descriptors. This rigorous experimental protocol evaluates the effectiveness, efficiency, and scalability of the proposed approach, and compares it with previous methods. Experimental results demonstrate that high effectiveness gains (up to +29%) can be obtained requiring small run times.en
dc.description.affiliationDept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)
dc.description.affiliationInstitute of Computing University of Campinas (UNICAMP)
dc.description.affiliationInstitute of Science and Technology Federal University of São Paulo (UNIFESP)
dc.description.affiliationUnespDept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipAdvanced Micro Devices
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipMicrosoft Research
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent51-58
dc.identifierhttp://dx.doi.org/10.1145/2671188.2749336
dc.identifier.citationICMR 2015 - Proceedings of the 2015 ACM International Conference on Multimedia Retrieval, p. 51-58.
dc.identifier.doi10.1145/2671188.2749336
dc.identifier.scopus2-s2.0-84962468667
dc.identifier.urihttp://hdl.handle.net/11449/168532
dc.language.isoeng
dc.relation.ispartofICMR 2015 - Proceedings of the 2015 ACM International Conference on Multimedia Retrieval
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectContent-based image retrieval
dc.subjectEffectiveness
dc.subjectEfficiency
dc.subjectScalability
dc.subjectUnsupervised learning
dc.titleEffective, efficient, and scalable unsupervised distance learning in image retrieval tasksen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções