Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Numerical modeling of flow through an industrial burner orifice

dc.contributor.authorReis, L. C. B. S. [UNESP]
dc.contributor.authorCarvalho, J. A. [UNESP]
dc.contributor.authorNascimento, M. A. R.
dc.contributor.authorRodrigues, L. O.
dc.contributor.authorDias, F. L. G.
dc.contributor.authorSobrinho, P. M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFundacao Oswaldo Aranha
dc.contributor.institutionCo Siderurg Nacl
dc.contributor.institutionUniv Fed Itajuba
dc.date.accessioned2014-12-03T13:08:58Z
dc.date.available2014-12-03T13:08:58Z
dc.date.issued2014-06-01
dc.description.abstractThis paper presents numerical modeling of a turbulent natural gas flow through a non-premixed industrial burner of a slab reheating furnace. The furnace is equipped with diffusion side swirl burners capable of utilizing natural gas or coke oven gas alternatively through the same nozzles. The study is focused on one of the burners of the preheating zone. Computational Fluid Dynamics simulation has been used to predict the burner orifice turbulent flow. Flow rate and pressure at burner upstream were validated by experimental measurements. The outcomes of the numerical modeling are analyzed for the different turbulence models in terms of pressure drop, velocity profiles, and orifice discharge coefficient. The standard, RNG, and Realizable k-epsilon models and Reynolds Stress Model (RSM) have been used. The main purpose of the numerical investigation is to determine the turbulence model that more consistently reproduces the experimental results of the flow through an industrial non-premixed burner orifice. The comparisons between simulations indicate that all the models tested satisfactorily and represent the experimental conditions. However, the Realizable k-epsilon model seems to be the most appropriate turbulence model, since it provides results that are quite similar to the RSM and RNG k-epsilon models, requiring only slightly more computational power than the standard k-epsilon model. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Guaratingueta, SP, Brazil
dc.description.affiliationFundacao Oswaldo Aranha, Volta Redonda, RJ, Brazil
dc.description.affiliationCo Siderurg Nacl, Usina Presidente Vargas, Volta Redonda, RJ, Brazil
dc.description.affiliationUniv Fed Itajuba, Itajuba, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Guaratingueta, SP, Brazil
dc.format.extent201-213
dc.identifierhttp://dx.doi.org/10.1016/j.applthermaleng.2014.02.036
dc.identifier.citationApplied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 67, n. 1-2, p. 201-213, 2014.
dc.identifier.doi10.1016/j.applthermaleng,2014.02.036
dc.identifier.issn1359-4311
dc.identifier.lattes6581222571777811
dc.identifier.orcid0000-0001-9606-3265
dc.identifier.urihttp://hdl.handle.net/11449/111773
dc.identifier.wosWOS:000337663100021
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Thermal Engineering
dc.relation.ispartofjcr3.771
dc.relation.ispartofsjr1,505
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectIndustrial combustionen
dc.subjectProcess simulationen
dc.subjectNumerical analysisen
dc.subjectIndustrial burneren
dc.subjectNatural gasen
dc.titleNumerical modeling of flow through an industrial burner orificeen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.lattes6581222571777811[6]
unesp.author.orcid0000-0001-9606-3265[6]

Arquivos

Coleções