Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms

dc.contributor.authorPereira, Luís A. M.
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.authorCoelho, André L. V.
dc.contributor.authorLima, Clodoaldo A. M.
dc.contributor.authorPereira, Danillo R. [UNESP]
dc.contributor.authorde Albuquerque, Victor Hugo C.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de Fortaleza
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T17:33:16Z
dc.date.available2018-12-11T17:33:16Z
dc.date.issued2017-06-28
dc.description.abstractEpilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.en
dc.description.affiliationInstituto de Computação Universidade Estadual de Campinas
dc.description.affiliationDepartamento de Computação UNESP - Univ Estadual Paulista
dc.description.affiliationPrograma de Pós-Graduação em Informática Aplicada Universidade de Fortaleza
dc.description.affiliationEscola de Artes Ciências e Humanidades Universidade de São Paulo
dc.description.affiliationUnespDepartamento de Computação UNESP - Univ Estadual Paulista
dc.format.extent1-13
dc.identifierhttp://dx.doi.org/10.1007/s00521-017-3124-3
dc.identifier.citationNeural Computing and Applications, p. 1-13.
dc.identifier.doi10.1007/s00521-017-3124-3
dc.identifier.file2-s2.0-85025146978.pdf
dc.identifier.issn0941-0643
dc.identifier.scopus2-s2.0-85025146978
dc.identifier.urihttp://hdl.handle.net/11449/179040
dc.language.isoeng
dc.relation.ispartofNeural Computing and Applications
dc.relation.ispartofsjr0,700
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectEEG signal classification
dc.subjectEpilepsy
dc.subjectFeature selection
dc.subjectMagnetic optimization algorithm
dc.subjectMetaheuristics
dc.subjectOptimum-path forest
dc.titleAutomatic identification of epileptic EEG signals through binary magnetic optimization algorithmsen
dc.typeArtigo
unesp.author.orcid0000-0002-6494-7514[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85025146978.pdf
Tamanho:
967.97 KB
Formato:
Adobe Portable Document Format
Descrição: