Regression by Re-Ranking

Nenhuma Miniatura disponível

Data

2023-08-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Several approaches based on regression have been developed in the past few years with the goal of improving prediction results, including the use of ranking strategies. Re-ranking has been exploited and successfully employed in several applications, improving rankings by encoding the manifold structure and redefining distances among elements from a dataset. Despite the promising results observed, re-ranking has not been evaluated in regressions tasks. This paper proposes a novel, generic, and customizable framework entitled Regression by Re-ranking (RbR), which explores the ability of re-ranking algorithms in determining relevant rankings of objects in prediction tasks. The framework relies on the integration of a base regressor, unsupervised re-ranking learning techniques, and predictions associated with nearest neighbours weighted according to their ranking positions. The RbR framework was evaluated under a rigorous experimental protocol and presented significant results in improving the prediction when compared to state-of-the-art approaches.

Descrição

Idioma

Inglês

Como citar

Pattern Recognition, v. 140.

Itens relacionados

Financiadores

Coleções