Enhancing biocompatibility and bone neoformation with nanostructured calcium aluminate cement

dc.contributor.authordos Santos, Andrea Fernanda Lopes
dc.contributor.authorVieira, Paula Fonseca Antunes
dc.contributor.authorde Araújo, Juliani Caroline Ribeiro [UNESP]
dc.contributor.authorde Vasconcellos, Luana Marotta Reis [UNESP]
dc.contributor.authorCastilho, Maiara Lima
dc.contributor.authorde Oliveira, Ivone Regina
dc.contributor.authorRaniero, Leandro
dc.contributor.institutionUniversity of Vale Do Paraíba
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T16:12:11Z
dc.date.available2023-07-29T16:12:11Z
dc.date.issued2023-06-01
dc.description.abstractPurpose: Because of bone loss, bone complex fractures require medical intervention. Bone grafting may result in a positive recovery from bone loss. As a result, attempts are being made to investigate new bone grafting materials as alternatives, as well as to reproduce bone specificities on a wide scale. Because of its characteristics, Homogeneous Calcium Aluminate Cement (CACH) is a viable candidate for bone substitution. Gold (AuNPs) and silver (AgNPs) nanoparticles can improve CACH efficiency. The biocompatibility of CACH material linked with AuNPs and AgNPs was examined in vitro and in vivo in this study. Methods: SEM and mitochondrial activity percentage fluctuation were used to analyze materials in vitro for cell adhesion, proliferation, and biocompatibility. Meanwhile, histological examination of samples in vivo searched for bone neoformation. Results: SEM and mitochondrial activity percentage variation revealed efficient cell adhesion and proliferation when linking biocompatible material. In both samples, histological investigation revealed bone neoformation. CACH linked with AuNPs, on the other hand, produced the most relevant results. Conclusion: Although both samples showed bone neoformation, CACH combined with AuNPs generated a potentially efficient bone repair material as an enhanced bone substitute.en
dc.description.affiliationResearch and Development Institute University of Vale Do Paraíba
dc.description.affiliationInstitute of Science and Technology Paulista State University
dc.description.affiliationUnespInstitute of Science and Technology Paulista State University
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFinanciadora de Estudos e Projetos: 01.13.0275.00
dc.description.sponsorshipIdFinanciadora de Estudos e Projetos: 01.18.0053.00
dc.description.sponsorshipIdFAPESP: 2017/07519-2
dc.description.sponsorshipIdCNPq: 302132/2015-5
dc.description.sponsorshipIdCNPq: 302944/2018-4
dc.format.extent389-396
dc.identifierhttp://dx.doi.org/10.1007/s42600-023-00278-8
dc.identifier.citationResearch on Biomedical Engineering, v. 39, n. 2, p. 389-396, 2023.
dc.identifier.doi10.1007/s42600-023-00278-8
dc.identifier.issn2446-4740
dc.identifier.issn2446-4732
dc.identifier.scopus2-s2.0-85153606917
dc.identifier.urihttp://hdl.handle.net/11449/249894
dc.language.isoeng
dc.relation.ispartofResearch on Biomedical Engineering
dc.sourceScopus
dc.subjectBone repair
dc.subjectCalcium aluminate cement
dc.subjectNanoparticles
dc.titleEnhancing biocompatibility and bone neoformation with nanostructured calcium aluminate cementen
dc.typeArtigo
unesp.author.orcid0000-0002-7082-7826[1]
unesp.author.orcid0000-0002-0231-0913[2]
unesp.author.orcid0000-0001-6926-1581[3]
unesp.author.orcid0000-0003-4344-0578[4]
unesp.author.orcid0000-0002-8410-0302[5]
unesp.author.orcid0000-0002-9747-7651[6]
unesp.author.orcid0000-0002-1962-8346[7]

Arquivos