Publicação:
U-CatcHCC: An Accurate HCC Detector in Hepatic DCE-MRI Sequences Based on an U-Net Framework

dc.contributor.authorFabijanska, Anna
dc.contributor.authorVacavant, Antoine
dc.contributor.authorLebre, Marie-Ange
dc.contributor.authorPavan, Ana L. M. [UNESP]
dc.contributor.authorPina, Diana R. de [UNESP]
dc.contributor.authorAbergel, Armand
dc.contributor.authorChabrot, Pascal
dc.contributor.authorMagnin, Benoit
dc.contributor.authorChmielewski, L. J.
dc.contributor.authorKozera, R.
dc.contributor.authorOrlowski, A.
dc.contributor.authorWojciechowski, K.
dc.contributor.authorBruckstein, A. M.
dc.contributor.authorPetkov, N.
dc.contributor.institutionLodz Univ Technol
dc.contributor.institutionUniv Clermont Auvergne
dc.contributor.institutionCtr Hosp Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:36:20Z
dc.date.available2021-06-25T12:36:20Z
dc.date.issued2018-01-01
dc.description.abstractThis paper presents a novel framework devoted to the detection of HCC (Hepato-Cellular Carcinoma) within hepatic DCE-MRI (Dynamic Contrast-Enhanced MRI) sequences, by a deep learning approach. In clinical routine, radiologists usually consider different phases during contrast injection (before injection; arterial phase; portal phase for instance) for HCC diagnosis. By employing a U-Net architecture, we are able to identify such tumors with a very high accuracy (98.5% of classification rate at best) for a small cohort of patients, which should be confirmed in future works by considering larger groups. We also show in this paper the influence of patch size for this machine learning process, and the positive impact of employing all phases available in DCE-MRI sequences, compared to use only one.en
dc.description.affiliationLodz Univ Technol, Inst Appl Comp Sci, 18-22 Stefanowskiego St, PL-90924 Lodz, Poland
dc.description.affiliationUniv Clermont Auvergne, SIGMA Clermont, CNRS, Inst Pascal, F-63000 Clermont Ferrand, France
dc.description.affiliationCtr Hosp Univ, Clermont Ferrand, France
dc.description.affiliationSao Paulo State Univ, Dept Phys & Biophys, Botucatu, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Phys & Biophys, Botucatu, SP, Brazil
dc.description.sponsorshipLodz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering
dc.description.sponsorshipIdLodz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering: 501/12-24-1-5428
dc.format.extent319-328
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-00692-1_28
dc.identifier.citationComputer Vision And Graphics ( Iccvg 2018). Cham: Springer International Publishing Ag, v. 11114, p. 319-328, 2018.
dc.identifier.doi10.1007/978-3-030-00692-1_28
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/210000
dc.identifier.wosWOS:000614368800028
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputer Vision And Graphics ( Iccvg 2018)
dc.sourceWeb of Science
dc.titleU-CatcHCC: An Accurate HCC Detector in Hepatic DCE-MRI Sequences Based on an U-Net Frameworken
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0002-0249-7247[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos