Learning concept drift with ensembles of optimum-path forest-based classifiers

dc.contributor.authorIwashita, Adriana Sayuri
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fortaleza
dc.date.accessioned2019-10-05T23:26:50Z
dc.date.available2019-10-05T23:26:50Z
dc.date.issued2019-06-01
dc.description.abstractConcept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Fed Sao Carlos, Sao Paulo, Brazil
dc.description.affiliationSao Paulo State Univ, Sao Paulo, Brazil
dc.description.affiliationUniv Fortaleza, Fortaleza, Ceara, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19200-8
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 304315/2017-6
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 430274/2018-1
dc.format.extent198-211
dc.identifierhttp://dx.doi.org/10.1016/j.future.2019.01.005
dc.identifier.citationFuture Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019.
dc.identifier.doi10.1016/j.future.2019.01.005
dc.identifier.issn0167-739X
dc.identifier.urihttp://hdl.handle.net/11449/186724
dc.identifier.wosWOS:000465509600018
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofFuture Generation Computer Systems-the International Journal Of Escience
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-path forest
dc.subjectConcept drift
dc.subjectEnsemble learning
dc.titleLearning concept drift with ensembles of optimum-path forest-based classifiersen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.orcid0000-0003-3886-4309[2]
unesp.author.orcid0000-0002-6494-7514[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos