Learning concept drift with ensembles of optimum-path forest-based classifiers
dc.contributor.author | Iwashita, Adriana Sayuri | |
dc.contributor.author | Albuquerque, Victor Hugo C. de | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fortaleza | |
dc.date.accessioned | 2019-10-05T23:26:50Z | |
dc.date.available | 2019-10-05T23:26:50Z | |
dc.date.issued | 2019-06-01 | |
dc.description.abstract | Concept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Sao Paulo, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Sao Paulo, Brazil | |
dc.description.affiliation | Univ Fortaleza, Fortaleza, Ceara, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Sao Paulo, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2016/19200-8 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 304315/2017-6 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | CNPq: 430274/2018-1 | |
dc.format.extent | 198-211 | |
dc.identifier | http://dx.doi.org/10.1016/j.future.2019.01.005 | |
dc.identifier.citation | Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019. | |
dc.identifier.doi | 10.1016/j.future.2019.01.005 | |
dc.identifier.issn | 0167-739X | |
dc.identifier.uri | http://hdl.handle.net/11449/186724 | |
dc.identifier.wos | WOS:000465509600018 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Future Generation Computer Systems-the International Journal Of Escience | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Optimum-path forest | |
dc.subject | Concept drift | |
dc.subject | Ensemble learning | |
dc.title | Learning concept drift with ensembles of optimum-path forest-based classifiers | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.author.orcid | 0000-0003-3886-4309[2] | |
unesp.author.orcid | 0000-0002-6494-7514[3] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |