Polaron-assisted electronic transport in ZnP2 nanowires

dc.contributor.authorde Oliveira, F. M.
dc.contributor.authorCabral, L.
dc.contributor.authorVillegas-Lelovsky, L. [UNESP]
dc.contributor.authorLima, Matheus P.
dc.contributor.authorAragón, F. F.H.
dc.contributor.authorMarques, G. E.
dc.contributor.authorChiquito, A. J.
dc.contributor.authorTeodoro, M. D.
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidad Nacional de San Agustín de Arequipa
dc.date.accessioned2023-07-29T13:47:57Z
dc.date.available2023-07-29T13:47:57Z
dc.date.issued2023-02-14
dc.description.abstractIn this work, carrier transport in a gold-seeded zinc diphosphide nanowire fabricated by vapor-liquid-solid and photolithography techniques is investigated in detail. The presence of zinc vacancies and interstitial phosphorus along the nanostructure resulted in defect levels evidenced by photoluminescence transitions observed in the near-infrared spectral range (800-900 nm). The electronic transport measurements by thermally stimulated current identified an activation energy of 80 meV, as well as a defect state with photoluminescence emission at 1.40 eV. The electronic transport in the transient regime was verified for temperatures below 50 K up to room temperature, and the photocurrent relaxation was described by a phenomenological model. We observed a well defined square-wave photoresponse of hundreds of nanoamperes per second during 532 nm light excitation, justifying the potential use of the device as a light sensor. Also, for the first time, ab initio calculations were performed considering defects of a Zn monovacancy close to an interstitial P atom to describe the luminescence transitions. The systematic use of a hybrid functional for these defects allows us to determine the presence of polarons due to the distortion of atomic bonds. Through the electronic property simulations, we corroborated the nature of p-type transport in zinc diphosphide nanowires.en
dc.description.affiliationPhysics Department Federal University of São Carlos, SP
dc.description.affiliationInstitute of Physics “Gleb Wataghin” (IFGW) State University of Campinas, SP
dc.description.affiliationPhysics Department IGCE Paulista State University, SP
dc.description.affiliationUniversidad Nacional de San Agustín de Arequipa, Av. Independéncia s/n
dc.description.affiliationUnespPhysics Department IGCE Paulista State University, SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Goiás
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Piauí
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent4243-4253
dc.identifierhttp://dx.doi.org/10.1039/d2tc05478g
dc.identifier.citationJournal of Materials Chemistry C, v. 11, n. 12, p. 4243-4253, 2023.
dc.identifier.doi10.1039/d2tc05478g
dc.identifier.issn2050-7534
dc.identifier.scopus2-s2.0-85151014900
dc.identifier.urihttp://hdl.handle.net/11449/248582
dc.language.isoeng
dc.relation.ispartofJournal of Materials Chemistry C
dc.sourceScopus
dc.titlePolaron-assisted electronic transport in ZnP2 nanowiresen
dc.typeArtigo
unesp.author.orcid0000-0003-4272-5416[1]
unesp.author.orcid0000-0002-3408-3612 0000-0002-3408-3612[3]
unesp.author.orcid0000-0001-5389-7649[4]
unesp.author.orcid0000-0001-5336-1131[5]
unesp.author.orcid0000-0002-8608-6508[6]
unesp.author.orcid0000-0002-2498-4820[7]
unesp.author.orcid0000-0002-3557-5555[8]

Arquivos