Publicação:
Effects of Triiodothyronine on Human Osteoblast-Like Cells: Novel Insights From a Global Transcriptome Analysis

dc.contributor.authorRodrigues, Bruna Moretto [UNESP]
dc.contributor.authorMathias, Lucas Solla [UNESP]
dc.contributor.authorDeprá, Igor de Carvalho [UNESP]
dc.contributor.authorCury, Sarah Santiloni [UNESP]
dc.contributor.authorde Oliveira, Miriane [UNESP]
dc.contributor.authorOlimpio, Regiane Marques Castro [UNESP]
dc.contributor.authorDe Sibio, Maria Teresa [UNESP]
dc.contributor.authorGonçalves, Bianca Mariani [UNESP]
dc.contributor.authorNogueira, Célia Regina [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-01T20:55:25Z
dc.date.available2023-03-01T20:55:25Z
dc.date.issued2022-06-17
dc.description.abstractBackground: Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear. Methods: To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and differentially expressed genes (DEGs) were identified from the raw data using Kallisto and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology Consortium database for BP terms using the R package clusterProfiler and protein network analysis by STRING. Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several independent BP terms related to bone metabolism were significantly enriched, with a number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1, S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of genes suggests that both T3 doses are unfavorable for osteoblast development, mainly hindering BMP and canonical and non-canonical WNT signaling. Conclusions: Therefore, this study provides new directions toward the elucidation of the mechanisms of T3 action on osteoblast metabolism, with potential future implications for the treatment of endocrine-related bone pathologies.en
dc.description.affiliationDepartment of Internal Medicine Medical School Botucatu São Paulo State University (UNESP)
dc.description.affiliationDepartment of Structural and Functional Biology Institute of Biosciences São Paulo State University (UNESP)
dc.description.affiliationUnespDepartment of Internal Medicine Medical School Botucatu São Paulo State University (UNESP)
dc.description.affiliationUnespDepartment of Structural and Functional Biology Institute of Biosciences São Paulo State University (UNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2014/16406-9 2015/26747-0
dc.identifierhttp://dx.doi.org/10.3389/fcell.2022.886136
dc.identifier.citationFrontiers in Cell and Developmental Biology, v. 10.
dc.identifier.doi10.3389/fcell.2022.886136
dc.identifier.issn2296-634X
dc.identifier.scopus2-s2.0-85133608575
dc.identifier.urihttp://hdl.handle.net/11449/241289
dc.language.isoeng
dc.relation.ispartofFrontiers in Cell and Developmental Biology
dc.sourceScopus
dc.subjectBMP—smad signaling pathway
dc.subjectosteobalst
dc.subjectRNA-seq
dc.subjectTGF-beta signaling pathway
dc.subjecttriiodothyronine
dc.titleEffects of Triiodothyronine on Human Osteoblast-Like Cells: Novel Insights From a Global Transcriptome Analysisen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Medicina, Botucatupt
unesp.departmentClínica Médica - FMBpt

Arquivos