A nature-inspired feature selection approach based on hypercomplex information

dc.contributor.authorRosa, Gustavo H. de [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorYang, Xin-She
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionMiddlesex Univ
dc.date.accessioned2020-12-10T20:11:45Z
dc.date.available2020-12-10T20:11:45Z
dc.date.issued2020-09-01
dc.description.abstractFeature selection for a given model can be transformed into an optimization task. The essential idea behind it is to find the most suitable subset of features according to some criterion. Nature-inspired optimization can mitigate this problem by producing compelling yet straightforward solutions when dealing with complicated fitness functions. Additionally, new mathematical representations, such as quaternions and octonions, are being used to handle higher-dimensional spaces. In this context, we are introducing a meta-heuristic optimization framework in a hypercomplex-based feature selection, where hypercomplex numbers are mapped to real-valued solutions and then transferred onto a boolean hypercube by a sigmoid function. The intended hypercomplex feature selection is tested for several meta-heuristic algorithms and hypercomplex representations, achieving results comparable to some state-of-the-art approaches. The good results achieved by the proposed approach make it a promising tool amongst feature selection research. (C) 2020 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationMiddlesex Univ, Sch Sci & Technol, London NW4 4BT, England
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2017/02286-0
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/219345
dc.description.sponsorshipIdFAPESP: 2019/02205-5
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2020.106453
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier, v. 94, 11 p., 2020.
dc.identifier.doi10.1016/j.asoc.2020.106453
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/11449/197275
dc.identifier.wosWOS:000565708500003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Soft Computing
dc.sourceWeb of Science
dc.subjectMeta-heuristic optimization
dc.subjectHypercomplex spaces
dc.subjectFeature selection
dc.titleA nature-inspired feature selection approach based on hypercomplex informationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos