A bayesian analysis for the parameters of the exponential-logarithmic distribution
dc.contributor.author | Moala, Fernando A. [UNESP] | |
dc.contributor.author | Garcia, Lívia M. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:29:49Z | |
dc.date.available | 2014-05-27T11:29:49Z | |
dc.date.issued | 2013-07-01 | |
dc.description.abstract | The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC. | en |
dc.description.affiliation | Departament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900 | |
dc.description.affiliationUnesp | Departament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900 | |
dc.format.extent | 282-291 | |
dc.identifier | http://dx.doi.org/10.1080/08982112.2013.764431 | |
dc.identifier.citation | Quality Engineering, v. 25, n. 3, p. 282-291, 2013. | |
dc.identifier.doi | 10.1080/08982112.2013.764431 | |
dc.identifier.issn | 0898-2112 | |
dc.identifier.issn | 1532-4222 | |
dc.identifier.lattes | 1621269552366697 | |
dc.identifier.orcid | 0000-0002-2445-0407 | |
dc.identifier.scopus | 2-s2.0-84879121469 | |
dc.identifier.uri | http://hdl.handle.net/11449/75788 | |
dc.identifier.wos | WOS:000320223400008 | |
dc.language.iso | eng | |
dc.relation.ispartof | Quality Engineering | |
dc.relation.ispartofjcr | 1.238 | |
dc.relation.ispartofsjr | 0,804 | |
dc.relation.ispartofsjr | 0,804 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Bayesian | |
dc.subject | exponential-logarithmic distribution | |
dc.subject | Jeffreys | |
dc.subject | MCMC | |
dc.subject | noninformative prior | |
dc.subject | posterior | |
dc.subject | Non-informative prior | |
dc.subject | Maximum likelihood estimation | |
dc.subject | Bayesian networks | |
dc.title | A bayesian analysis for the parameters of the exponential-logarithmic distribution | en |
dc.type | Artigo | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
unesp.author.lattes | 1621269552366697[1] | |
unesp.author.orcid | 0000-0002-2445-0407[1] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudente | pt |
unesp.department | Estatística - FCT | pt |