A bayesian analysis for the parameters of the exponential-logarithmic distribution

dc.contributor.authorMoala, Fernando A. [UNESP]
dc.contributor.authorGarcia, Lívia M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:29:49Z
dc.date.available2014-05-27T11:29:49Z
dc.date.issued2013-07-01
dc.description.abstractThe exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.en
dc.description.affiliationDepartament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900
dc.description.affiliationUnespDepartament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900
dc.format.extent282-291
dc.identifierhttp://dx.doi.org/10.1080/08982112.2013.764431
dc.identifier.citationQuality Engineering, v. 25, n. 3, p. 282-291, 2013.
dc.identifier.doi10.1080/08982112.2013.764431
dc.identifier.issn0898-2112
dc.identifier.issn1532-4222
dc.identifier.lattes1621269552366697
dc.identifier.orcid0000-0002-2445-0407
dc.identifier.scopus2-s2.0-84879121469
dc.identifier.urihttp://hdl.handle.net/11449/75788
dc.identifier.wosWOS:000320223400008
dc.language.isoeng
dc.relation.ispartofQuality Engineering
dc.relation.ispartofjcr1.238
dc.relation.ispartofsjr0,804
dc.relation.ispartofsjr0,804
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectBayesian
dc.subjectexponential-logarithmic distribution
dc.subjectJeffreys
dc.subjectMCMC
dc.subjectnoninformative prior
dc.subjectposterior
dc.subjectNon-informative prior
dc.subjectMaximum likelihood estimation
dc.subjectBayesian networks
dc.titleA bayesian analysis for the parameters of the exponential-logarithmic distributionen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
unesp.author.lattes1621269552366697[1]
unesp.author.orcid0000-0002-2445-0407[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentEstatística - FCTpt

Arquivos