Publicação:
Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

dc.contributor.authorAlves, Sofia A.
dc.contributor.authorPatel, Sweetu B.
dc.contributor.authorSukotjo, Cortino
dc.contributor.authorMathew, Mathew T.
dc.contributor.authorFilho, Paulo N. [UNESP]
dc.contributor.authorCelis, Jean-Pierre
dc.contributor.authorRocha, Luís A. [UNESP]
dc.contributor.authorShokuhfar, Tolou
dc.contributor.institutionUniversity of Minho
dc.contributor.institutionIBTN/US – American Branch of the Institute of Biomaterials
dc.contributor.institutionMichigan Technological University
dc.contributor.institutionUniversity of Illinois at Chicago
dc.contributor.institutionRush University Medical Center
dc.contributor.institutionUIC school of Medicine
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:08:37Z
dc.date.available2018-12-11T17:08:37Z
dc.date.issued2017-03-31
dc.description.abstractThe modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO2) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO3, Ca3(PO4)2, CaHPO4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.en
dc.description.affiliationCMEMS – Center of Micro Electro Mechanical Systems Department of Mechanical Engineering University of Minho
dc.description.affiliationIBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine
dc.description.affiliationDepartment of Mechanical Engineering Michigan Technological University
dc.description.affiliationDepartmenmt of Restorative Dentistry University of Illinois at Chicago
dc.description.affiliationDepartment of Orthopedic Surgery Rush University Medical Center
dc.description.affiliationDepartment of Biomedical science UIC school of Medicine
dc.description.affiliationIBTN/Br – Brazilian Branch of the Institute of Biomaterials Tribocorrosion and Nanomedicine UNESP – Universidade Estadual Paulista Faculdade de Ciências Campus de Bauru
dc.description.affiliationDepartment of Materials Engineering, KU Leuven
dc.description.affiliationDepartment of Bioengineering University of Illinois at Chicago
dc.description.affiliationFaculdade de Ciências Departamento de Física UNESP - Universidade Estadual Paulista
dc.description.affiliationUnespIBTN/Br – Brazilian Branch of the Institute of Biomaterials Tribocorrosion and Nanomedicine UNESP – Universidade Estadual Paulista Faculdade de Ciências Campus de Bauru
dc.description.affiliationUnespFaculdade de Ciências Departamento de Física UNESP - Universidade Estadual Paulista
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent682-701
dc.identifierhttp://dx.doi.org/10.1016/j.apsusc.2016.12.105
dc.identifier.citationApplied Surface Science, v. 399, p. 682-701.
dc.identifier.doi10.1016/j.apsusc.2016.12.105
dc.identifier.file2-s2.0-85007174726.pdf
dc.identifier.issn0169-4332
dc.identifier.scopus2-s2.0-85007174726
dc.identifier.urihttp://hdl.handle.net/11449/173982
dc.language.isoeng
dc.relation.ispartofApplied Surface Science
dc.relation.ispartofsjr1,093
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAnodization
dc.subjectBio-functionalization
dc.subjectCalcium-phosphorous surface
dc.subjectOsseointegrated implants
dc.subjectReverse polarization
dc.subjectTiO2 nanotubes
dc.titleSynthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surfaceen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentFísica - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85007174726.pdf
Tamanho:
7.98 MB
Formato:
Adobe Portable Document Format
Descrição: