Publicação: Uma introdução à integral de Riemann contextualizada ao ensino médio
Carregando...
Arquivos
Data
Autores
Orientador
Silva, Fabiano Borges da 

Coorientador
Pós-graduação
Matemática em Rede Nacional - FC/FCT/FEIS/IBILCE/IGCE 31075010001P2
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Neste trabalho apresentamos a definição da integral de Riemann por meio de somatórios de retângulos que aproximam pela falta e pelo excesso a região sob uma curva definida por uma função. Posteriormente mostramos que as funções contínuas definidas num intervalo fechado e limitado [a, b] são integráveis e fornecemos um exemplo de função não integrável. Finalmente apresentamos o Teorema Fundamental do Cálculo e uma abordagem para a teoria de integração que pode ser aplicada no contexto do Ensino Médio.
Resumo (inglês)
ln this work we present the definition of the Riemann integral by summing rectangles that approximate the region under a curve defined by a function due to lack and excess. Then we show that continuous functions defined in a closed and limited interval [a, b] are integrable, and after we provide an example of an unintegrable function. Finally we present the Fundamental Calculus Theorem and an approach to integration theory that can be applied in the High School context.
Descrição
Palavras-chave
Funções integráveis, Riemann, Funções contínuas, Teorema fundamental do cálculo, Integrable functions, Continuous functions, Fundamental calculus theorem
Idioma
Português