Computation of nielsen and reidemeister coincidence numbers for multiple maps

dc.contributor.authorMonis, Thaís Fernanda Mendes [UNESP]
dc.contributor.authorWong, Peter
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:12:23Z
dc.date.available2021-06-25T11:12:23Z
dc.date.issued2020-01-01
dc.description.abstractLet f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).en
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515
dc.description.affiliationDepartment of Mathematics Bates College
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2018/03550-5
dc.format.extent483-499
dc.identifierhttp://dx.doi.org/10.12775/TMNA.2020.002
dc.identifier.citationTopological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.
dc.identifier.doi10.12775/TMNA.2020.002
dc.identifier.issn1230-3429
dc.identifier.scopus2-s2.0-85101597593
dc.identifier.urihttp://hdl.handle.net/11449/208453
dc.language.isoeng
dc.relation.ispartofTopological Methods in Nonlinear Analysis
dc.sourceScopus
dc.subjectNielsen coincidence number
dc.subjectNilmanifolds
dc.subjectTopological coincidence theory
dc.titleComputation of nielsen and reidemeister coincidence numbers for multiple mapsen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos