Biocompatibility and bioactive potential of an experimental tricalcium silicate-based cement in comparison with Bio-C repair and MTA Repair HP materials
Nenhuma Miniatura disponível
Data
2023-02-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Aim: To evaluate the tissue reaction of a tricalcium silicate-based repair material associated with 30% calcium tungstate (TCS + CaWO4) in comparison to Bio-C Repair (Bio-C; Angelus) and to MTA Repair HP (MTA HP; Angelus). Methodology: Polyethylene tubes filled with one of the materials or left empty (control group, CG) were implanted into the subcutaneous tissues of rats for 7, 15, 30 and 60 days (n = 32/group). The capsule thickness, number of inflammatory cells, collagen content, interleukin-6 (IL-6), osteocalcin (OCN), von Kossa reaction and analysis under polarized light were evaluated. The data were subjected to generalized linear models for repeated measures, except the OCN. OCN data were submitted to Kruskal–Wallis and Dunn's post hoc test and Friedman followed by Nemenyi's test at significance level of 5%. Results: At all time points, significant differences in the number of inflammatory cells were not observed between TCS + CaWO4 and Bio-C, whereas, at 15, 30 and 60 days, no significant difference was detected between TCS + CaWO4 and MTA HP. At all periods, significant differences were not detected in the number of fibroblasts in TCS + CaWO4 versus MTA HP, and, at 60 days, no significant difference was demonstrated between these groups and CG. Significant differences in the immunoexpression of IL-6 were not detected amongst bioceramic materials at all periods. From 7 to 60 days, significant reduction in the number of inflammatory cells, number of IL-6-immunopositive cells and in the capsule thickness was accompanied by significant increase in the collagen in all groups. OCN-immunolabelled cells, von Kossa-positive structures and amorphous calcite deposits were observed around all materials, whereas, in the CG, these structures were not seen. Conclusions: These findings indicate that the experimental material (TCS + CaWO4) is biocompatible and has a bioactive potential, similar to the MTA HP and Bio-C Repair, and suggest its use as a root repair material.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
International Endodontic Journal, v. 56, n. 2, p. 259-277, 2023.