Dynamical thermalization in time-dependent billiards
Nenhuma Miniatura disponível
Data
2019-10-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Numerical experiments of the statistical evolution of an ensemble of noninteracting particles in a time-dependent billiard with inelastic collisions reveals the existence of three statistical regimes for the evolution of the speed ensemble, namely, diffusion plateau, normal growth/exponential decay, and stagnation. These regimes are linked numerically to the transition from Gauss-like to Boltzmann-like speed distributions. Furthermore, the different evolution regimes are obtained analytically through velocity-space diffusion analysis. From these calculations, the asymptotic root mean square of speed, initial plateau, and the growth/decay rates for an intermediate number of collisions are determined in terms of the system parameters. The analytical calculations match the numerical experiments and point to a dynamical mechanism for thermalization, where inelastic collisions and a high-dimensional phase space lead to a bounded diffusion in the velocity space toward a stationary distribution function with a kind of reservoir temperature determined by the boundary oscillation amplitude and the restitution coefficient.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Chaos, v. 29, n. 10, 2019.