Unsupervised land-cover classification through hyper-heuristic-based Harmony Search

dc.contributor.authorPapa, J. [UNESP]
dc.contributor.authorPapa, L.
dc.contributor.authorPisani, R.
dc.contributor.authorPereira, D.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionSao Paulo State Southwest College
dc.contributor.institutionUniversity of Western São Paulo
dc.date.accessioned2022-04-28T19:03:17Z
dc.date.available2022-04-28T19:03:17Z
dc.date.issued2015-11-10
dc.description.abstractUnsupervised land-cover classification aims at learning intrinsic properties of spectral and spatial features for the task of area coverage in urban and rural areas. In this paper, we propose to model the problem of optimizing the well-known k-means algorithm by combining different variations of the Harmony Search technique using Genetic Programming (GP). We have shown GP can improve the recognition rates when using one optimization technique only, but it still deserves a deeper study when we have a very good individual technique to be combined.en
dc.description.affiliationSão Paulo State University Department of Computing
dc.description.affiliationSao Paulo State Southwest College Department of Health
dc.description.affiliationUniversity of Western São Paulo Department of Computing
dc.description.affiliationUnespSão Paulo State University Department of Computing
dc.format.extent69-72
dc.identifierhttp://dx.doi.org/10.1109/IGARSS.2015.7325699
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), v. 2015-November, p. 69-72.
dc.identifier.doi10.1109/IGARSS.2015.7325699
dc.identifier.scopus2-s2.0-84962486996
dc.identifier.urihttp://hdl.handle.net/11449/220596
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectClustering
dc.subjectGenetic Programming
dc.subjectLand-cover classification
dc.subjectMachine Learning
dc.titleUnsupervised land-cover classification through hyper-heuristic-based Harmony Searchen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções