Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A 2D Deep Boltzmann Machine for Robust and Fast Vehicle Classification

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The visual and automatic classification of vehicles plays an important role in the Transport Area. Besides of security issues, the monitoring of the type of traffic in streets and highways, as well the traffic dynamics over time, allows the optimization of use and of resources related to such public infrastructure. In this work we propose a novel method, called 2D-DBM, for robust and efficient automatic vehicle classification through color images based on a DBM (Deep Boltzmann Machine) combined with bilinear projections. While the DBM training allows a robust initialization of discriminative MLP (Multilayer Perceptron) neural network parameters, the bilinear projection technique can scale down the MLP dimensions, obtaining efficiency while preserving accuracy. The proposed method was assessed on the BIT-Vehicle database, a challenging dataset consisting of frontal images of vehicles collected in a real traffic environment, and compared with a CNN (Convolutional Neural Network) and a traditional DBM (without bilinear projection). The obtained results show that, while keeping the accuracy, the new method significantly reduced the network size and the processing time.

Descrição

Palavras-chave

Bilinear Projection, Deep Boltzmann Machines, Image Analysis, Traffic Control, Vehicle Classification

Idioma

Inglês

Citação

Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 155-162.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso