Manifold Correlation Graph for Semi-Supervised Learning
Nenhuma Miniatura disponível
Data
2018-10-10
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto
Resumo
Due to the growing availability of unlabeled data and the difficulties in obtaining labeled data, the use of semi-supervised learning approaches becomes even more promising. The capacity of taking into account the dataset structure is of crucial relevance for effectively considering the unlabeled data. In this paper, a novel classifier is proposed through a manifold learning approach. The graph is constructed based on a new hybrid similarity measure which encodes both supervised and unsupervised information. Next, strongly connected components are computed and used to analyze the dataset manifold. The classification is performed through a voting scheme based on primary (labeled) and secondary (unlabeled) voters. An experimental evaluation is conducted, considering various datasets, diverse situations of training/test dataset sizes and comparison with baselines. The proposed method achieved positive results in most of situations.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.