Sex differences in IL-10’s anti-inflammatory function: Greater STAT3 phosphorylation and stronger inhibition of TNF-α production in male blood leukocytes ex vivo

Nenhuma Miniatura disponível

Data

2022-06-01

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Interleukin-10 (IL-10) inhibits pro-inflammatory cytokine production in blood leukocytes – an effect mediated by signal transducer and activator of transcription 3 (STAT3) activation. To examine potential sex-based differences in IL-10’s anti-inflammatory function, we treated whole blood from healthy males and females (n=16 each; age: 28±6 years; body mass index: 23.5±2.3 kg/m2) with increasing concentrations of IL-10 (1-100 ng/mL) and quantified changes in phosphorylated STAT3 (pSTAT3) in CD14+ monocytes and CD4+ lymphocytes via flow cytometry. In parallel, liposaccharide (LPS)-stimulated whole-blood cultures were used to assess sex-based differences in IL-10’s ability to inhibit tumour necrosis factor (TNF)-α production. IL-10 concentration-dependently increased pSTAT3 mean fluorescent intensity (MFI) in CD14+ and CD4+ cells (main effects of concentration, P<0.01) with males exhibiting larger changes in pSTAT3 MFI in both cell types (main effects of sex, P<0.01). Accordingly, IL-10-mediated inhibition of TNF-α production was more pronounced in males (main effect of sex, P<0.01) with changes in other monocyte-derived cytokines (IL-1β, IL-1RA, IL-15) also supporting a sexual dimorphism in IL-10 action (P<0.05). These sex-based differences were not explained by differences in circulating plasma IL-10 concentrations, basal IL-10 receptor expression in unstimulated CD14+ and CD4+ cells, nor the basal expression of IL-10 signaling proteins (STAT3, SHIP1, p38 MAPK) in unstimulated peripheral blood mononuclear cells. We conclude that IL-10’s anti-inflammatory function differs between male and female blood leukocytes ex vivo. This sexual dimorphism should be considered in future work investigating IL-10’s anti-inflammatory action in humans as it may represent a mechanism contributing to sex differences in overall immune function.

Descrição

Palavras-chave

cytokine synthesis inhibitory factor, cytokines, inflammation, lymphocytes, monocytes, SHIP1, TLR4

Como citar

American Journal of Physiology - Cell Physiology, v. 322, n. 6, p. C1095-C1104, 2022.