Publicação:
Extrapolation of AR models using cubic splines for damage progression evaluation in composite structures

dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorPaixão, Jessé [UNESP]
dc.contributor.authorRébillat, Marc
dc.contributor.authorMechbal, Nazih
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCNAM
dc.date.accessioned2021-06-25T10:12:53Z
dc.date.available2021-06-25T10:12:53Z
dc.date.issued2021-02-01
dc.description.abstractThis paper presents the potentiality of the use of extrapolation of a set of Auto-Regressive (AR) models to inspect a future damage sensitive indices based on changes in one-step-ahead prediction errors. The key idea is to use multiple AR models to assess a data-driven model to represent and predict the time-series outputs of the PZT sensors receiving Lamb waves in a composite coupon. Based on some simplified assumptions, after detecting initial damage using some previous classifier, its progression evaluation by interpolating the AR parameters is proposed and examined based on cubic spline functions. After, an extrapolated AR model using this information may verify the future state and to inspect how the damage could progress. An aeronautical composite panel with bonded piezoelectric elements that act both as sensors and actuators is utilized to examine the relationship between the variation of the identified model parameters with various levels of simulated damage. The results have shown a smooth and adequate correlation between the estimates obtained by the extrapolated model and the actual progress of the damage observed. The significant advantage of the proposed procedure is implementing this task without adopting a complicated and costly mathematical-physical model.en
dc.description.affiliationDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.description.affiliationPIMM Laboratory Arts et Métiers ENSAM/CNRS CNAM
dc.description.affiliationUnespDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/15512-8
dc.description.sponsorshipIdFAPESP: 2018/15671-1
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.format.extent284-295
dc.identifierhttp://dx.doi.org/10.1177/1045389X20963171
dc.identifier.citationJournal of Intelligent Material Systems and Structures, v. 32, n. 3, p. 284-295, 2021.
dc.identifier.doi10.1177/1045389X20963171
dc.identifier.issn1530-8138
dc.identifier.issn1045-389X
dc.identifier.scopus2-s2.0-85092416422
dc.identifier.urihttp://hdl.handle.net/11449/205287
dc.language.isoeng
dc.relation.ispartofJournal of Intelligent Material Systems and Structures
dc.sourceScopus
dc.subjectAuto-regressive models
dc.subjectcomposite structures
dc.subjectdamage progression
dc.subjectdata-driven system identification
dc.subjectextrapolated model
dc.subjectmultiple models
dc.titleExtrapolation of AR models using cubic splines for damage progression evaluation in composite structuresen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-6430-3746[1]
unesp.author.orcid0000-0002-2035-0986[2]

Arquivos

Coleções