Publicação:
Ocular Recognition Using Deep Features for Identity Authentication

dc.contributor.authorVizoni, Marcelo V. [UNESP]
dc.contributor.authorMarana, Aparecido N. [UNESP]
dc.contributor.authorPaiva, A. C.
dc.contributor.authorConci, A.
dc.contributor.authorBraz, G.
dc.contributor.authorAlmeida, JDS
dc.contributor.authorFernandes, LAF
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:50:56Z
dc.date.available2021-06-25T11:50:56Z
dc.date.issued2020-01-01
dc.description.abstractRecently, ocular biometrics has been gaining importance in Biometrics due to the poor performance obtained in some cases by biometric systems based on characteristics of the whole face. This paper presents a new method for person authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). Another interesting aspect of our method is that, instead of using directly the deep features as input for the authentication system, it uses the difference between the probe and gallery deep features. So, our method adopts a pairwise strategy. A binary support vector machine is trained to determine whether a given difference vector is genuine or impostor. The proposed new method based on such pairwise strategy was evaluated using the ocular left set of the UBIPr dataset and five pre-trained CNN architectures. When using the pre-trained VGG-Face the proposed method obtained a state-of-the-art result (3.18% of Equal Error Rate).en
dc.description.affiliationSao Paulo State Univ UNESP, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Bauru, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipNVIDIA Corporation (GPU Grant Program)
dc.description.sponsorshipIdCAPES: 001
dc.format.extent155-160
dc.identifier.citationProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 155-160, 2020.
dc.identifier.issn2157-8672
dc.identifier.urihttp://hdl.handle.net/11449/209188
dc.identifier.wosWOS:000615731300028
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition
dc.sourceWeb of Science
dc.subjectocular biometrics
dc.subjectdeep learning
dc.subjectconvolutional neural networks
dc.subjectperson authentication
dc.titleOcular Recognition Using Deep Features for Identity Authenticationen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication

Arquivos

Coleções