Exercise Training Prevents Dexamethasone-induced Rarefaction
Nenhuma Miniatura disponível
Data
2017-09-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Dexamethasone (DEX) causes rarefaction. In contrast, training (T) prevents rarefaction and stimulates angiogenesis. This study investigated the mechanisms responsible for the preventive role of T in DEX-induced rarefaction. Rats underwent T or were kept sedentary (8 weeks) and were treated with DEX or saline during the following 14 days. Tibialis anterior muscle was used for measurements of capillary density (CD), capillary-to-fiber ratio (C:F ratio), superoxide dismutase CuZn (SOD-1), superoxide dismutase MnSOD (SOD-2), catalase (CAT) mRNA as well as SOD-1, SOD-2, CAT, vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-2 (VEGF-R2), cyclooxygenase-2 (COX-2), Bcell lymphoma 2 (Bcl-2), Bd-2-like protein 4 (Bax), p-Bax, and caspase-3 cleaved protein levels. DEX decreased CD (238.1%), C:F ratio (230.0%), VEGF (219.0%), VEGFR-2 (220.1%), COX-2 (222.8%), Bcl-2 (220.5%), Bcl-2/Bax ratio (213.7%), p-Bax/Bax (220.0%) and increased SOD-2 (+41.6%) and caspase-3 cleaved (+24.1%). Conversely, T prevented reductions in CD (+54.2%), C:F ratio (+32.9%), VEGF (+25.3%), VEGFR-2 (+22.2%), COX-2 (+31.5%), Bcl-2 (+35.5%), Bcl-2/Bax ratio (+19.9%), p-Bax/Bax (+32.1%), and caspase-3 cleaved increase (27.8%). T increased CAT mRNA (+21.5%) in the DEX-treated group. In conclusion, T prevented the DEX-induced rarefaction by increasing antioxidant enzymes resulting in a better balance between apoptotic and antiapoptotic protein levels.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Cardiovascular Pharmacology, v. 70, n. 3, p. 194-201, 2017.