Exploring polynomial classifier to predict match results in football championships

Carregando...
Imagem de Miniatura

Data

2017-10-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Football is the team sport that mostly attracts great mass audience. Because of the detailed information about all football matches of championships over almost a century, matches build a huge and valuable database to test prediction of matches results. The problem of modeling football data has become increasingly popular in the last years and learning machine have been used to predict football matches results in many studies. Our present work brings a new approach to predict matches results of championships. This approach investigates data of matches in order to predict the results, which are win, draw and defeat. The investigated groups were different type of combinations of two by two pairs, win-draw, win-defeat and draw-defeat, of the possible matches results of each championship. In this study we employed the features obtained by scouts during a football match. The proposed system applies a polynomial algorithm to analyse and define matches results. Some machine-learning algorithms were compared with our approach, which includes experiments with information obtained from the football championships. The association between polynomial algorithm and machine learning techniques allowed a significant increase of the accuracy values. Our polynomial algorithm provided an accuracy superior to 96%, selecting the relevant features from the training and testing set.

Descrição

Idioma

Inglês

Como citar

Expert Systems with Applications, v. 83, p. 79-93.

Itens relacionados

Financiadores

Coleções