Effects of a parametric perturbation in the Hassell mapping
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Resenha
Direito de acesso
Acesso aberto

Fonte externa
Fonte externa
Resumo
The convergence to the fixed point near at a transcritical bifurcation and the organization of the extreming curves for a parametric perturbed Hassell mapping are investigated. The evolution of the orbits towards the fixed point at the transcritical bifurcation is described using a phenomenological approach with the support of scaling hypotheses and homogeneous function hence leading to a scaling law related with three critical exponents. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law. The extreming curves in the parameter space dictates the organization for the windows of periodicity, consequently demonstrating how the set of shrimp-like structures are organized.
Descrição
Palavras-chave
Convergence to the stationary state, Extreming curves, Parameter space, Perturbed Hassell mapping
Idioma
Inglês
Citação
Chaos, Solitons and Fractals, v. 113, p. 238-243.


